Student Activities for Theorem 7

The angle opposite the greater of two sides is greater than the angle opposite the lesser.
Resources needed: Compass, Ruler, Protractor and sharp pencil

Which of these chairs is the most stable? Can you explain why?

Investigate if there is a relationship between the measures of the sides and angles in a triangle.

Work in pairs.
(i) Measure the lengths of the sides a, b, and c in cm and the angles A, B, C in degrees

$\|a\|=$	$\|b\|=$	$\|c\|=$
$\|<A\|=$	$\|<B\|=$	$\|<C\|=$

Name the longest side: \qquad Name the largest angle: \qquad
Name the shortest side: \qquad Name the smallest angle: \qquad
Name the median side: \qquad Name the median angle: \qquad
Of the two sides, largest and smallest, which has the largest angle opposite? \qquad
Of the two sides, largest and median, which has the largest angle opposite? \qquad
Of the two sides, median and smallest, which has the largest angle opposite? \qquad
(ii) Label the angles and sides using the letters $\mathrm{D}, \mathrm{E}, \mathrm{F}$ and $\mathrm{d}, \mathrm{e}, \mathrm{f}$, and fill in the measurements.

$\|d\|=$	$\|e\|=$	$\|f\|=$
$\|<D\|=$	$\|<E\|=$	$\|<F\|=$

Name the longest side: \qquad Name the largest angle: \qquad

Name the shortest side: \qquad Name the smallest angle: \qquad
Name the median side: \qquad Name the median angle: \qquad
Of the two sides, largest and smallest, which has the largest angle opposite it? \qquad
Of the two sides, largest and median, which has the largest angle opposite it? \qquad Of the two sides, median and smallest, which has the largest angle opposite it? \qquad
(iii) Label the angles and sides using the letters G, H, I and g, h, i and fill in the measurements

Name the longest side: \qquad Name the largest angle: \qquad

Name the shortest side: \qquad Name the smallest angle: \qquad

Name the median side: \qquad Name the median angle: \qquad

Of the two sides, largest and smallest, which has the largest angle opposite it? \qquad
Of the two sides, largest and median, which has the largest angle opposite it? \qquad

Of the two sides, median and smallest, which has the largest angle opposite it? \qquad
What pattern have you noticed regarding relationship between the measures of sides and angles in a triangle?
\qquad
\qquad
(iv)Draw any triangle, except an equilateral triangle, to see if the observed pattern continues.
(Why not draw an equilateral triangle? \qquad _)

Label the sides and angles using the above convention. Measure the lengths of all the sides and angles in the triangle.

Length of side/cm			
Measure of angle opposite/ ${ }^{0}$			

Name the longest side: \qquad Name the largest angle: \qquad

Name the shortest side: \qquad Name the smallest angle: \qquad

Name the median side: \qquad Name the median angle: \qquad

Of the two sides, largest and smallest, which has the largest angle opposite it? \qquad

Of the two sides, largest and median, which has the largest angle opposite it? \qquad
Of the two sides, median and smallest, which has the largest angle opposite it? \qquad
From the above triangles it appears that for any $\mathbf{2}$ sides in the triangles the angle opposite the larger (greater) of the $\mathbf{2}$ sides is \qquad than the angle opposite the smaller (lesser)of the 2 sides.

Do the above examples prove that this is always the case? Explain

[^0]
To Prove: In a triangle, the angle opposite the greater of $\mathbf{2}$ sides is greater than the angle opposite the lesser of 2 sides.

Given: $|A C|>|A B|$ prove that $|<A B C|>|<A C B|$

- Using a compass construct a point D on $A C$ such that $|\mathrm{AD}|=|\mathrm{AB}|$

What type of triangle is ABD? \qquad

- Shade in and write down the angles in triangle ABD which are equal.
\qquad (i)

Why are they equal? \qquad
$<A D B$ is an \qquad angle for triangle BDC.

Use a previous theorem to write down $|<A D B|$ in terms of 2 angles in triangle BDC.
|<ADB| = \qquad
Shade in those 2 angles in different colours.

Write down the relationship between $|<A C B|$ and $|<A D B|$ (bigger /smaller)
\qquad (ii)

Hence write down the relationship between $|<A C B|$ and $|<A B D|$ (using (i))

Hence write down the relationship between $|<A C B|$ and $|<A B C|$

Hence write down the relationship between $|<A B C|$ and $|<A C B|$ (in this order)

Concept of "Converse" (students at the Relational level of the Van Hiele levels of

 geometric reasoning, can recognise the difference between a statement and its converse)The Converse of "If A, then B " is the assertion "If B, then A ".

For example, the converse of "If it is my car, then it's silver" is "If the car is silver, then its mine."

From this example we see that there is no guarantee that the converse of a true statement is true.

Given the statements below, fill in whether they are true/false, fill in their converses, and whether the converses are true or false.

Statement	True/False	Converse	True/False
If I live in Dublin, then I live in Ireland.			
A triangle is a polygon with three sides			
If an angle is a right angle then its measure is 90°.			
If 3 points are collinear, then they lie on the same line.			
A square is figure with four right angles.			
In a triangle the angle opposite the greater of two sides is greater than the angle opposite the lesser of the two sides.			

Investigating the converse of theorem 7

Refer back to Pages 1 and 2, triangles (i), (ii), (iii), and (iv)
Fill in from (i)
$|<A|=\quad|<B|=\quad|<C|=$
$|a|=\quad|b|=\quad|c|=$

Of the two angles, largest and smallest, which has the largest side opposite it? \qquad
Of the two angles, largest and median, which has the largest side opposite it? \qquad
Of the two angles, median and smallest, which has the largest side opposite it? \qquad
Is the greater side opposite the greater angle?
Repeat this for triangles (ii), (iii), and (iv), on Pages 1 and 2
(ii) Label the angles and sides using the letters $\mathrm{D}, \mathrm{E}, \mathrm{F}$ and $\mathrm{d}, \mathrm{e}, \mathrm{f}$, and fill in the measurements.

$|<D|=\quad|<E|=\quad|<F|=$
$|d|=\quad|e|=\quad|f|=$

Name the largest angle: \qquad Name the longest side: \qquad
Name the smallest angle: \qquad Name the shortest side: \qquad
Name the median angle: \qquad Name the median side: \qquad
Of the two angles, largest and smallest, which has the largest side opposite? \qquad
Of the two angles, largest and median, which has the largest side opposite? \qquad
Of the two angles, median and smallest, which has the largest side opposite? \qquad
(iii) Label the angles and sides using the letters $\mathrm{G}, \mathrm{H}, \mathrm{I}$ and $\mathrm{g}, \mathrm{h}, \mathrm{i}$ and fill in the measurements

$\|<G\|=$	$\|<H\|=$	$\|<I\|=$
$\|g\|=$	$\|h\|=$	$\|i\|=$

Name the largest angle: \qquad Name the longest side: \qquad
Name the smallest angle: \qquad Name the shortest side: \qquad
Name the median angle: \qquad Name the median side: \qquad
Of the two angles, largest and smallest, which has the largest side opposite it? \qquad
Of the two angles, largest and median, which has the largest side opposite it? \qquad
Of the two angles, median and smallest, which has the largest side opposite it? \qquad

What pattern have you noticed regarding the relationship between the measures of angles and sides in a
triangle? \qquad
\qquad
\qquad
\qquad

Proof of the converse of Theorem 7 - We use proof by contradiction (students at higher level leaving cert are expected to know the meaning of this term)
(Note on proof by contradiction: Assume a statement is not true and show that this assumption leads to a contradiction - called reduction as absurdum (reduction to absurdity) in Latin.)

To Prove: The side opposite the greater of two angles in a triangle is greater than the side opposite the lesser of two angles.

Given: $|<A B C|>|<A C B|$

To Prove: $|A C|>|A B|$

Proof: Assuming that $|A C|$ is not greater than $|A B|$, what are the only other options for the relationship between $|A C|$ and $|A B|$?

Option 1: \qquad
Option 2: \qquad
If option 1 is true draw the triangle which would represent option 1.

Hence what type of triangle is triangle $A B C$? \qquad

Hence what is the relationship between the $|<A B C|$ and $|<A C B|$? \qquad

Is this in agreement with or does it contradict, what we were given? \qquad

Hence, can option 1, i.e. \qquad be true? \qquad

If option $\mathbf{2}$ is true draw the triangle which would represent option 2.

Using the theorem we proved earlier, what does this does this tell us about the relationship between $|<A B C|$ and $|<A C B|$ in this scenario? \qquad Is this in agreement with or does it contradict, what we were given? \qquad
Hence, can option 2, i.e. \qquad , be true? \qquad

If there are only 3 options, which option/s are now possible for the relationship between $|A C|$ and $|A B|$ given that $|<A B C|>|<A C B|$? \qquad

Teacher's board and students' copy for the proof of theorem 7 and its converse

Converse of theorem 7

**Reference back to the director's chair, answer to question

When the crossbar is positioned so that angle A is larger, the side $B C$ of $\triangle A B C$ is larger. The first chair is the most stable because its legs are farthest apart.

[^0]: **Refer back to the question on the director's chair, and use what you have learned to answer the question.

