Linear Pattems

ARITHMETIC SEQUENCES AND SERIES

Maths

Linear Pattems

Linear Pattems J unior Certific ate 4.1 to 4.4

Arithmetic Sequences and Series Leaving Certific ate Section 3.1

Gym Costs

Gym	Cost
Membership fee	$€ 50$
Cost pervisit	$€ 10$

A. Is there a pattem to the cost of this gym? Why?
B. Can you predict how much the gym will cost for 9 visits?
C. How can we investigate if a pattem exists?

Development Team

Gym Costs

Number of visits to Gym	Total cost c in€	Total cost c in €
0	50	50
1	$50+10$	60
2	$50+10+10$	70
3	$50+10+10+10$	80
4	$50+10+10+10+10$	90
5	$50+10+10+10+10+10$	100
6	$50+10+10+10+10+10+10$	110

Graph of Gym Costs

Which is the independent variable and which is the dependent variable?

What is the Pattem of the Gym costs?

Number of visits	Total cost c	Pattem
Tota I cost of 0 Visits	50	$50+0(10)$
Tota I c ost of 1 Visit	$50+10$	$50+1(10)$
Tota I c ost of 2 Visits	$50+10+10$	$50+2(10)$
Tota I cost of 3 Visits	$50+10+10+10$	$50+3(10)$
Total cost of 4 Visits	$50+10+10+10+10$	$50+4(10)$
Tota I cost of 6 Visits	$50+10+10+10+10+10+10$	$50+6(10)$

Cost Pattem for the Gym

Visits	$\begin{gathered} \text { Total cost } \mathrm{C} \\ \text { in } € \end{gathered}$	Change
0	50	
1	60	+10
2	70	+10
3	80	+10
4	90	+10
5		+10
		+10
6	110	

What type of pattem is modelled and why?
Linear Pattem

Rate of Change of the Gym costs

Rate of change $=$ Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{10}{1}=10$

For Linear Pattems Sope is the Same in each Interval

Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{10}{1}=10$
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{30}{3}=10$

Pattem 50 + 10v

Total Cost c $=50+10 \mathrm{v}$
Where is the 50 and the 10 represented on thisgraph?

Altemative Ways of Finding the Slope or Rate of Change

Slope $=$ Rate of change $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{90-80}{4-3}=10 \quad$ Slope $=\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\text { Rise }}{\text { Run }}=\frac{10}{1}$

Determine the Costs of Gym B

Membership fee of $€ 30$ and cost per visit of $€ 10$

$$
c=30+10 v
$$

Total cost in euro equals initial cost (30) +10 (number of visits)

Determine the Costs of Gym C

Membership fee of $€ 30$ and cost per visit of $€ 20$

$$
c=30+20 v
$$

Total cost in euro equals initial cost (30) +20 (number of visits)

Tree Ring Dating

Using tree ring dating doesthe growth rate of the circumference of this tree model a linearpattem? Expla in your reasoning.

J oan's Sweet Box

Joan got a present of a box of 100 sweets.
She decides to eat 5 sweets perday from the box. Represent this information in a table, a graph and a formula. After how many days will she have exactly 40 sweets left?

Day Number	Sweets
0	100
1	95
2	90
3	85
4	80

Sweets s, in box on day, d. $\mathrm{s}=100-5 \mathrm{~d}$

Spending Habits

Given Carol's and Joan's spending habits are modelled by the pattem in the diagram below desc ribe each of their spending habits and represent this with relevant formulas?

Carol has $€ 150$ to start with and she spends $€ 20$ per week.

$$
s(w)=150-20 w \quad f(x)=150-20 x
$$

J oan has $€ 100$ to start with a nd she spends $€ 10$ perweek.

$$
s(w)=100-10 w \quad f(x)=100-10 x
$$

Spending Habits

At the beginning of which week will J oan have no money and at the beginning of which week will Carol have no money?

J oan has no money at the beginning of week 11
Carol has no money at the beginning of week 8, in fact she only has $€ 10$ during week 7

Give the Equation of the Following lines

$y=5-2 x$
$y=-2 x+5$
$2 x+y=5$
$f(x)=5-2 x$

$$
\begin{aligned}
& y=3+2 x \\
& y=2 x+3 \\
& 2 x-y=-3 \\
& f(x)=2 x+3
\end{aligned}
$$

$f(x)=a x+b$

If $f(x)=a x+b$, the rate of change(slope) is alwaysequal to a.

Examples of linear Pattems

- Constant savings pattems with no interest
- Constant spending pattems
- ESB bills
- Mobile phone standing charge +charge pertexts
- Call out charge for a workman +hourly rates
- Distance travelled by a car travelling at a constant speed
- Plant growing a constant amount perday
- Level of water in a tank aswater is pumped from the tank at a constant pace
- Level of water in a tank when water enters the tank at a constant pace
- Vehicle depreciating in value by a constant a mount each year (Straight Line depreciation) (This is not the reducing balance method.)

What do you notice about these pictures?
Are these pictures in proportion?
How could you tell if they are in proportion?
If you double the length you must double the width
If you multiply the length by n you must multiply the width also by n
Enlargements are proportional relationships

Proporional and non Proportional Stuations

$$
\begin{aligned}
& f: x \rightarrow 2 x \\
& f: x \rightarrow 3 x \\
& f: x \rightarrow n x
\end{aligned}
$$

Notice when $x=0, y=0$ so these functions always go through (0, 0)

Proportional and non Proportional Stuations

$$
\begin{gathered}
f(x)=x+4 \\
f(1)=5 \\
f(2)=6
\end{gathered}
$$

This function is non proportional

Proportional always linear and of the form $y=m x$

Proportional and non Proportional Stuations

- It is linear of the form $y=m x$
- It passes through the origin, has no 'start-up' value
- If x is doubled (or inc reased by any multiple) then y is doubled (orincreased by the same multiple)

Multi-Representational Approach

Story	Table	Graph	Formula	Which of the following apply? Linear, non linear, proportional or non proportional? Justify

Leamed so Far

- Tables, Graphs, Words and Formula (Multi Representational Approach)
- Linear Pattems
- Rate of change $=\frac{\text { Rise }}{\text { Run }}=$ Slope
- Equation of the line is $y=m x+c$, where m is the rate of change (slope) and c is where the line cuts the y-axis (y intercept)
- Variables a nd Constants
- Independent and dependent variables
- Proportional and non proportional situations

Original Gym A Problem: Membership $€ 50$ and $€ 10$ per visit

	Total cost
0	50
1	60
2	70
3	80
4	90

Term	Pattem	Formula
1	50	a
2	$50+10$	$\mathrm{a}+\mathrm{d}$
3	$50+10+10$	$\mathrm{a}+\mathrm{d}+\mathrm{d}$
4	$50+10+10+10$	$\mathrm{a}+\mathrm{d}+\mathrm{d}+\mathrm{d}$
5	$50+10+10+10+10$	$\mathrm{a}+\mathrm{d}+\mathrm{d}+\mathrm{d}+\mathrm{d}$

Sequence $=\{50,60,70,80,90, \ldots\} \quad.(a=$ first term $) \quad(d=$ common difference $)$

Can you predict what the $\underline{10^{\text {th }} \text { term }}$ will be in termsa and $d ?$

Can you predict what the $\mathrm{n}^{\text {th }}$ term of the sequence will be in terms of a, d and n ?

$$
a+9 d
$$

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

Anthmetic Sequences (Linear Pattems)

Sequences that have a first term, a and you add a common difference, d to the previousterm to get the next term are known as anithmetic sequences.
$1,2,3,4,5, \ldots$
Yes
$1,2,4,8,16, \ldots$
No

Complete the next term of the following pattem and complete a table, graph and formula for the pattem.

Shape Number	Tlles
1	1
2	5
3	9
4	13
5	17

$T_{n}=1+(n-1) 4$
$T_{n}=4 n-3$
n is the shape number, $\mathrm{n} \in \mathrm{N}$

J oan joins a DVD club. It costs €12.00 to join the club and a ny DVD she rents will cost an extra $€ 2$. Jonathan joins a different DVD club where there is no initial charge, but it costs €4 to rent a DVD. Represent these two situations in a table. List the sequence that represents the cost of the DVDs to Joan and Jonathan. Are these sequences arithmetic sequences and why? In terms of a the first term, d the common difference and n the number of the terms, derive a formula for T_{n} for these sequence.

DVDs	Cost to Joan	Cost to Jonathan	Term
0	12	0	1
1	14	4	2
2	16	8	3
3	18	12	4
4	20	16	5
5	22	20	6

Joan	Jonathan
$T_{n}=a+(n-1) d$	$T_{n}=a+(n-1) d$
$T_{n}=12+(n-1) 2$	$T_{n}=0+(n-1) 4$
$T_{n}=10+2 n$	$T_{n}=4 n-4$

J oan $\{12,14,16,18,20,22,24, \ldots\}$
Jonathan $\{4,8,12,16,20,24,28, \ldots\}$
Maths
Development Team

Given the nth tem of a a rithmetic sequence is $T_{n}=2 n+3$.
What is the $(\mathrm{n}+1)^{\text {th }}$ term?
$T_{n+1}=2(n+1)+3$
$T_{n+1}=2 n+5$
Was this true for this sequence?

> Given we are dealing with an arithmetic sequence in terms of a, d and n what should $T_{n+1}-T_{n}$ equal? Answer: d

$T_{n+1}-T_{n}$	$T_{2}-T_{1}$
$=2 n+5-[2 n+3]$	$T_{1}=5$ and $T_{2}=7$ $=2$
$=7-5=2$ $=d$	

To prove $T_{n+1}-T_{n}=d$ forall arithmetic sequences

$$
\begin{aligned}
& T_{n+1}-T_{n} \\
& =a+(n+1-1) d-[a+(n-1) d] \\
& =a+n d-a-n d+d \\
& =d
\end{aligned}
$$

Three Consecutive Terms

An a rithmetic sequence is such that $T_{n}=4 n+3$.
Is it possible to find three consecutive terms of this sequence such that their sum is equal to 117 and if so find these tems.

$$
\begin{aligned}
& T_{n}=4 n+3 \\
& T_{n+1}=4(n+1)+3 \\
& T_{n+2}=4(n+2)+3 \\
& T_{n}+T_{n+1}+T_{n+2}=117 \\
& 4 n+3+4(n+1)+3+4(n+2)+3=117 \\
& 12 n+21=117 \\
& 12 n=96 \\
& n=8
\end{aligned}
$$

$$
T_{8}=4(8)+3=35
$$

$$
T_{9}=4(9+1)+3=39
$$

$$
T_{10}=4(10+2)+3=43
$$

Emma eams €300 during her first week in the job and each week after that she ea ms an extra €20 per week.
(a) How much does she eam during hertenth week in this job?
(b) How much doesshe eam in total during the first ten weeks in this job?
(a) $\mathrm{T}_{10}=300+9(20)$
$T_{10}=300+180$
$T_{10}=480$
Hence on hertenth week she eams €480
(b) The sequence is as follows: 300, 320, 340, 360, 380, 400, 420, 440, 460, 480 Hence she eams $€ 3900$ in the first ten weeks in the job.
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{10}=\frac{10}{2}[2(300)+(10-1) 20]$
$\mathrm{S}_{10}=3900$

The first ten terms of the series is:

$$
300+320+340+360+380+400+420+440+460+480=3900
$$

Proof of Formula

The sum of the first n tems of an arithmetic series

(Students will not be required to prove this formula.)

$S_{n}=T_{1}+T_{2}+T_{3}+T_{4}+\cdots+T_{n-1}+T_{n}$
$S_{n}=a+a+d+a+2 d+a+3 d+\cdots+a+(n-2) d+a+(n-1) d$
[1]
Note S_{n} can a lso be written as: $T_{n}+T_{n-1}+\cdots+T_{4}+T_{3}+T_{2}+T_{1}$
Writing Sn in reverse:
$S_{n}=a+(n-1) d+a+(n-2) d+\cdots+a+3 d+a+2 d+a+d+a$
[2]

Adding [1] and [2]

$S_{n}=a+a+d+a+2 d+a+3 d+\cdots+a+(n-2) d+a+(n-1) d$
$S_{n}=a+(n-1) d+a+(n-2) d+\cdots+a+3 d+a+2 d+a+d+a$
$2 S_{n}=\{2 a+(n-1) d\}+\{2 a+(n-1) d\}+\{2 a+(n-1) d\}+\cdots+\{2 a+(n-1) d\}+\{2 a+(n-1) d\}$
$2 S_{n}=n\{2 a+(n-1) d\}$
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ Formula as performula a nd tables booklet

Summing the Natural Numbers

Find the sum of the first 100 natural numbers.

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& a=1 \quad d=1 \quad n=100 \\
& S_{100}=\frac{100}{2}[2(1)+(100-111] \\
& S_{100}=50[101] \\
& S_{100}=5050
\end{aligned}
$$

$$
\begin{gathered}
S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
S_{n}=\frac{n}{2}[a+a+(n-1) d] \\
S_{n}=\frac{n}{2}[\text { first term }+n \text {th term }]
\end{gathered}
$$

Gauss Method:
$\{1,2,3,4,5,6,7, \cdots, 99,100\}$
$1+100=101$
$2+99=101$
$3+98=101$
$50+51=101$
$\mathrm{S}_{\mathrm{n}}=50(101)=5050$

Find the sum of all integers, from 5 to 1550 inclusive that a re divisible by 5.

$$
\begin{aligned}
& a=5 \quad d=5 \quad T_{n}=1550 \\
& T_{n}=a+(n-1) d \\
& 5+5(n-1)=1550 \\
& 5 n=1550 \\
& n=310
\end{aligned}
$$

$$
\mathrm{S}_{310}=\frac{310}{2}[2(5)+(310-1) 5]
$$

$$
S_{310}=155[1555]=241025
$$

$$
\mathrm{S}_{310}=\frac{310}{2}[\text { First }+ \text { last }]
$$

$$
S_{310}=155[5+1550]
$$

$$
S_{310}=241025
$$

Caroline bought 400 designer tiles at an end of line sale. She wants to use them as a feature in her new bathroom. If she decides on a pattem of the format shown, how many tiles will be on the bottom row of the design if she uses all the tiles.

$S_{n}=\frac{\mathrm{n}}{2}[2(1)+(n-1) 2]=400$
$\mathrm{n}[2+2 \mathrm{n}-2]=800$
$2 n^{2}=800$
$\mathrm{n}^{2}=400$
$\mathrm{n}=20$
$T_{20}=1+(20-1) 2=39$
39 bricks needed for the bottom row of the design

Denise has no sa vings and wants to purchase a car costing €6000. She sta rts sa ving in J a nuary 2012 and saves $€ 200$ that month. Every month afterJ a nuary 2012 she saves $€ 5$ more than she saved the previous month. When will Denise be able to purchase the car of her choice? Ignore any interest she may receive on her savings.
$a=200 \quad d=5$
$s_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{n}=\frac{n}{2}[400+(n-1) 5]$
$S_{n}=6000$
$n[400+5 n-5]=12000$
$400 n+5 n^{2}-5 n=12000$
$5 n^{2}+395 n-12000=0$
$n=\frac{-395 \pm \sqrt{(395)^{2}-4(5)(-12000)}}{2(5)}=\frac{-395 \pm \sqrt{396025}}{10}=\frac{-395 \pm 629.31}{10}=23.431$
Hence after 23.43 months (December 2013) Denise will be able to purchase hercar.

Does the following graph model a sequence of numbers that form an arithmetic sequence?
Explain your reasoning.

A teacher is distributing sweets to 120 students. She gives each child a unique number starting at 1 and going to 120 . She then distributed the sweets as follows, if the student has an odd on their ticket she gives them twice the number of sweets as theirtic ket number and if the number on theirticket is even she gives then three times the number of sweets as their tic ket number.
How many sweets does she distribute?

Student	1	2	3	4	5	6	7	8
Sweets	2	6	6	12	10	18	14	24

Does the data in the table represent an arithmetic sequence?
No. The change not the same
Odd Numbered Students EvenNumbered Surdents

$\{2,6,10,14, \ldots\}$	$\{6,12,18,24, \ldots\}$

$\mathrm{S}_{60}=\frac{60}{2}[2(2)+(60-1) 4]$
$\mathrm{S}_{60}=\frac{60}{2}[2(6)+(60-1) 6]$
$S_{60}=30[4+236]=7200 \quad S_{60}=30[12+354]=10980$
Total sweets distributed $7200+10980=18180$

Joe had been saving regula rly for some months when he discovered he had lost his savings records. He found two records that showed he saved €260 in the fifth month and had a total of $€ 3300$ in the eleventh month. He knows he increased the amount he saved each month by a constant amount and had some savings before he commence this savings plan. How much did he increase his savings by each month and how much had he in his account when he started this savings plan?
$\mathrm{T}_{5}=\mathrm{a}+(5-1) \mathrm{d}=\mathrm{a}+4 \mathrm{~d}=260$
$\mathrm{S}_{11}=\frac{11}{2}[2 a+(11-1) d]=3300$
$11[2 a+10 d]=6600$
$2 a+10 d=600$
$a+5 d=300$
$a+5 d=300$
$a+4 d=260$
$d=40$
$a+5(40)=300$
$a=100$
He increased his savings by €40 per month a nd had $€ 100$ when he started this savings plan.

Sample Paper Phase 2 PI OLQ5

Sile is investigating the number of square grey tiles needed to make pattems in a sequence. The first three pattems are shown below, and the sequence continues in the same way. In each pattem, the tilesform a square and its two diagonals. There are no tiles in the white areas in the pattems - there are only the grey tiles.

(a) In the table below, write the number of tiles needed for each of the first five pattems:

Pattems	1	2	3	4	5
No. of tiles	21	33			

(a) In the table below, write the number of tiles needed foreach of the first five pattems:

Pattems	1	2	3	4	5
No. of tiles	21	33	45	57	69
Change	12		12	12	12

Shape 1: $\quad 1+4+16=21$

Shape 2: $1+4+4+24$

$$
1+2(4)+3(8)=33
$$

Shape 3: $1+4+4+4+32$

$$
1+3(4)+4(8)=45
$$

Shape 4: $\quad 1+4(4)+5(8)=57$

Shape 5: $\quad 1+5(4)+6(8)=69$
(b) Find, in terms of n, a formula that gives the number of tiles needed to make the nth pattem

Shape 1: $1+(1) 4+2(8)$
Shape 2: $1+(2) 4+3(8)$
Shape 3: $1+3(4)+4(8)$
Shape 4: $1+4(4)+5(8)$
Shape 5: $1+5(4)+6(8)$
Shape $\mathrm{n}: 1+\mathrm{n}(4)+(\mathrm{n}+1)(8)$
$9+12 n$

Use T_{n} formula
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-\mathrm{l}) \mathrm{d}$
$\mathrm{T}_{\mathrm{n}}=21+(\mathrm{n}-1) 12$
$\mathrm{T}_{\mathrm{n}}=21+12 \mathrm{n}-12$
$\mathrm{T}_{\mathrm{n}}=9+12 \mathrm{n}$
Project
(c) Using your formula, or otherwise, find the number of tiles in the tenth pattem.

$$
\begin{aligned}
& T_{n}=9+12 n \\
& T_{10}=9+12(10) \\
& T_{10}=129
\end{aligned}
$$

(d) Síle has 399 tiles. What is the biggest pattem in the sequence that she can make?
$9+12 n=399$
$12 n=390$
$\mathrm{n}=32.5$
So $32^{\text {nd }}$ pattem
(e) Find in tems of n, a general formula for the total number of tiles in the pattems.

Pattems	1	2	3	4	5
No. of tiles	21	33	45	57	69
change	12		12	12	12

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{n}=\frac{n}{2}[2(21)+(n-1) 12] \\
& S_{n}=n(15+6 n)
\end{aligned}
$$

(f) Síle starts at the beginning of the sequence a nd makes as ma ny of the pattems as she can. She does not break up the earlier pattems to make the new ones. For example, aftermaking the first two pattems, she has used up 54 tiles, $(21+33)$. How many pattems can she make in total with her 399 tiles?
$21+33+45+57+69+81+93=399$
so exactly 7 pattems
or use S_{n}
$S_{n}=n(15+6 n)=399$
$15 n+6 n^{2}=399$
$2 n^{2}+5 n-133=0$
$(2 n+19)(n-7)=0$
Solution $n=7$

Sample Paper Phase 2 PI OLQ6

J ohn is given two sunflower plants. One plant is 16 cm high and the other is 24 cm high. John measures the height of each plant at the same time every day for a week. He notes that the 16 cm plant grows 4 cm each day, and the 24 cm plant grows 3.5 cm each day.
(a) Draw up a table showing the heights of the two plants each

Day	Height of Plant A	Height of Plant B
0	16	24
1	20	27.5
2	24	31
3	28	34.5
4	32	38
5	36	41.5

(b) Write down two formulas - one foreach plant - to represent the plant's height on a ny given day. State clearly the meaning of a ny letters used in your formulas.

Plant A: $h=16+4 d$, where d is the number of daysJ ohn has had the plant and h is the height of the plant on day d.

Plant B: $\quad h=24+3.5 d$, where d is the number of days John has had the plant and h is the height of the plant on day d.
(c) J ohn a ssumes that the plants will continue to grow at the same rates. Draw graphsto represent the heights of the two plants over the first four weeks.

(d) (i) From your diagram, write down the point of intersection of the two graphs.
(ii) Expla in what the point of intersection means, with respect to the two plants. Your answer should refer to the meaning of both co-ordinates.

(e) Check your answer to part (d)(i) using your formulae from part (b).

$$
16+4 x=24+3.5 x
$$

$4 x-3.5 x=24-16$
$0.5 x=8$
$x=16$

When $x=16$

$$
\begin{aligned}
& f(x)=16+4(16)=80 \\
& g(x)=24+3.5(16)=80
\end{aligned}
$$

(f) The point of intersection can be found either by reading the graph or by using algebra. State one advantage of finding it using algebra.

More accurate answer by Algebra.
(g) J ohn's model for the growth of the plants might not be correct. State one limitation of the model that might affect the point of intersection and its interpretation.

Plant's growth may not follow a regular pattem.

Resources

Teaching \& Learning Plans
Introduction to Patterns

surtor Corvificte syllbus

 Maths

Teaching \& Learning Plans
Arithmetic Sequences
Leanding cortiflozte syllates

Teaching \& Learning Plans
Arithmetic Series

Leaving Certificate Syllabus

Show 2 Workshop 4

Maths

Each hour, a clock chimes the number of times that corresponds to the time of day. For example, at three o'clock, it will chime 3 times.
How many times does the clock chime in a day (24 hours)?
Day: $\{1,2,3, \ldots, 10,11,12\}$
Night: \{, 2, 3, .., 10, 11, 12\}
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{12}=\frac{12}{2}[2(1)+(12-1) 1]$
$\mathrm{S}_{12}=6[13]$
$\mathrm{S}_{12}=78$

Total chimes in 24 hours is $2(78)=156$

A theatre has 15 seats on the first row, 20 seats on the sec ond row, 25 seats on the third row, and so on and has 24 rows of seats. How many seats are in the theatre?
$\{15,20,25, \ldots\}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{24}=\frac{24}{2}[2(15)+(24-1) 5]$
$\mathrm{S}_{24}=12[145]$
$\mathrm{S}_{24}=1740$

Total number of seats in this theatre is 1740.

The green T-shaped figure in the table below is called T_{13} as this T-shaped figure has 13 as initial value.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	48	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Find the value of T_{26}
$26+27+28+37+47=165$
Find the sum of the numbers in the $n^{\text {th }}$ Tin tems of n.
$\mathrm{n}+\mathrm{n}+1+\mathrm{n}+2+\mathrm{n}+11+\mathrm{n}+21=5 \mathrm{n}+35$
Find the set of numbers from which we can choose n.

