Further Exploration of Patterns

Abstract Quadratic Patterns

	a+k)+C	4a+2	2b+c	9a+3	3b+c	16a+	4b+c	25a+	5b+c
1 st change		3a	+b	5a	+b	7a	+b	9a	+b	
2 nd change			2	a	2	a	2	a	Coefficien	t of n^2 is $\frac{1}{2}(2a)$

Constant second change, therefore it is quadratic starting with an².

Write out the an² series a, 4a, 9a, 16a,... and subtract from the original series.

	a+b+c,	4a + 2b + c,	9a + 3b + c,	16a + 4b + c	c, $25a + 5b + c,$	
—	a	4a	9a	16a	25a,	
	b+c	2b+c	3b+c	4b+c	5b+c,	
			K	XK		
1 st char	nge b	k)	Ь	b This is linear bn	

If you now go down form the 1^{st} term which is (b+c)-b=c

The General Term is now $an^2 + bn + c$

Generalising Quadratic Sequences

→n ² 1, 4, 9, 16, 25,
1 st change 3 5 7 9
2 nd change 2 2 2
<mark>→2n² 2, 8, 18, 32, 50,</mark>
1 st change 6 10 14 18
2 nd change 4 4 4
→4n ² 4, 16, 36, 64, 100,
1 st change 12 20 28 36
2 nd change 8 8 8
→0.5n ² 0.5, 2, 4.5, 8, 12.5,
1 st change 1.5 2.5 3.5 4.5
2 nd change 1 1 1

When you get half the 2^{nd} change you get the coefficient of n^2

Your Turn [2.7 pg. 18]

Write the General Formula for the following paterns.

$(a) 0, 12, 27, 10, 70, \dots$	(a)	3,	12,	27,	48,	75,
-------------------------------------	-----	----	-----	-----	-----	-----

(b) 0.25, 1, 2.25, 4, 6.25,...

Solutions:

(a) 3n² (b) 0.25n²

More Difficult Quadratic Patterns – Method 1

6, 12, 20, 30, 42,... 1st change 3 5 7 9 2nd change 2 2 2 Therefore it is n² with other terms. Write out the n² series 1, 4, 9, 16,... and subtract from the original series. 6, 12, 20, 30, 42,... <u>- 1, 4, 9, 16, 25,...</u> 5, 8, 11, 14, 17,... 1st change 3 3 3 3 This is linear 3n

If you now go down form the 1^{st} term which is 5-3=2

The general term is now $n^2 + 3n + 2$

More Difficult Quadratic Patterns – Method 2

6, 12, 20, 30, 42,...

Look for lowest common factor, here it is 2

 2×3 , 3×4 , 4×5 , 5×6 , 6×7 ,...

This is an $AP \times AP$

First AP	2, 3, 4, 5, 6,	$T_n = a + (n-1)d = 2 + (n-1)1 = n+1$
Second AP	3, 4, 5, 6, 7,	$T_n = a + (n - 1)d = 3 + (n - 1)1 = n + 2$

 $T_n \times T_n = (n+1)(n+2) = n^2 + 3n + 2$

Your Turn [2.8 pg. 18]

Write the General Formula for the following paterns.

(a)	5,	12,	21,	32,	45,
(b)	5,	15,	31,	53,	81,

Solutions:

(a) $n^2 + 4n$ (b) $3n^2 + n + 1$

Your Turn [2.9 pg. 18]

How many blocks are in the 4th pattern?

Write a gerneral formula to find the number of in the nth pattern.

How many blocks are in the 8th pattern?

SOLUTION

 4
 12
 24
 40

 1st change
 8
 12
 16

 2nd change
 4
 4
 Constant, therefore quadratic

Method 1

4 12 24 40 1st change 8 12 16 2^{nd} change 4 4 2 Therefore it is $2n^2$ with other terms. Write out the $2n^2$ series 2, 8, 18, 32,... and subtract from the original series. 4, 12, 24, 40,... - 2, 8, 18, 32,... 2, 4, 6, 8, 1st change 2 2 2 This is linear 3*n* If you now go down form the 1^{st} term which is 2-2=0

The general term is now $2n^2 + 2n$

 $T_8 = 2(8)^2 + 2(8) = 144$ blocks

Method 2

4, 12, 24, 40,

Look for lowest common factor, here it is 2 [Looking at length×breadth]

 2×2 , 3×4 , 4×6 , 5×8 ,

This is an $AP \times AP$

First AP2, 3, 4, 5,... $T_n = a + (n-1)d = 2 + (n-1)1 = n+1$ Second AP3, 4, 5, 6, 7,... $T_n = a + (n-1)d = 2 + (n-1)2 = 2n$

 $T_n \times T_n = (n+1)(2n) = 2n^2 + 2n$

 $T_8 = 2(8)^2 + 2(8) = 144$ blocks

Graphing the Couples

Given you have 20 metres of wire, what is the maximum rectangular shaped area that you can enclose?

Area 9 16 21 24

1st change 7 5 3

2nd change -2 -2 Therefore it is $-n^2$ with other terms.

Write out the $-n^2$ series -1, -4, -9, -16,... and subtract from the original series.

9, 16, 21, 24,... - -1, -4, -9, -16,... 10, 20, 30, 40, This is linear 10n

The general term for the area is $-n^2 + 10n$

Geometric

 $T_{1} = 2$ $T_{2} = 4$ $T_{3} = 8$ $T_{4} = 16$ \vdots $T_{n} = ?$ This is a Geometric Sequence with $T_{1} = 2 = a$ Each term is multiplied by 2 to get the next term: r(Common Ratio) = 2

Finding the T_n of a Geometric Sequence

 $T_{1} = \alpha$ $T_{2} = \alpha r$ $T_{3} = (\alpha r)r = \alpha r^{2}$ $T_{4} = (\alpha r^{2})r = \alpha r^{3}$ $T_{5} = (\alpha r^{3})r = \alpha r^{4}$ \vdots $T_{n} = \alpha r^{n-1}$ Exponential

Project Maths Tionscadal Mata Development Team A ball is dropped from a height of 8 m. The ball bounces to 80% of its previous height with each bounce. How high (to the nearest cm) does the ball bounce on the fifth bounce.

- 1st2nd3rd4th5th8,6.4,5.12,4.96,3.2768,2.62144
- 2.62144m = 262 cm
- Is this a Linear, Quadratic or Cubic pattern?
- Let's look at the graph of this.

Write down the function which describes the red graph. What is the total distance travelled by the ball when it hits the ground for the 5th time? What if we were asked to find the total distance travelled when the ball hits the ground for the 20th time. Is there any general way of doing it?

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 $S_n = \frac{a(1 - r^n)}{1 - r}$

Finding the S_n of a Geometric Series

$$S_{n} = a + ar + ar^{2} + ar^{3} + ar^{4} + \cdots$$

$$\frac{rS_{n}}{S_{n} - rS_{n}} = a + 0 + 0 + 0 + 0 + \cdots$$

$$\frac{rS_{n} - rS_{n}}{S_{n} - rS_{n}} = a + 0 + 0 + 0 + \cdots$$
Subtracting

$$(1-r)S_n = a - ar^n$$
$$S_n = \frac{a - ar^n}{1 - r}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$
 or $S_n = \frac{a(r^n-1)}{r-1}$

These formulas can also be proved by Induction

Link to Student's CD

A rabbit is 10 metres away from a some food. It hops 5 metres, then hops 2.5 metres, then 1.25 metres, and so on, hopping half its previous hop each time. What will the length of the 6th hop be?

5, 2.5, 1.25, 0.625, 0.3125,...

What type of pattern is this? Discuss

A rabbit is 10 metres away from some food. It hops 5 metres, then hops 2.5 metres, then 1.25 metres, and so on, hopping half its previous hop each time.

If the rabbit kept hopping forever, what in theory would be the total distance travelled by it?

The Sum to Infinity of a GP

For |r| < 1 $r^{\infty} = 0$

$$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{a}{1-r} - \frac{ar^{n}}{1-r}$$
$$S_{\infty} = \frac{a}{1-r} - \frac{0}{1-r} \quad \text{as } r^{\infty} = 0 \text{ for } |r| < 1$$

$$S_{\infty} = \frac{\alpha}{1-r}$$
 for $|r| < 1$

Extending the Blocks Question

Find the total number of blocks required to make the first 25 patterns. $T_n = 2n^2 + 2n$

$$S_{n} = 2\sum_{r=1}^{n} r^{2} + 2\sum_{r=1}^{n} r$$

$$S_{n} = 2\left[\frac{n(n+1)(2n+1)}{6}\right] + 2\left[\frac{n(n+1)}{2}\right]$$

$$S_{n} = \left[\frac{n(n+1)(2n+1)}{3}\right] + n(n+1)$$

$$S_{25} = \left[\frac{25(25+1)(2(25)+1)}{3}\right] + 25(25+1)$$

$$S_{25} = 11,700$$

Three Formulae

These formulas can be proved by Induction

Summary of GP formulae

$$T_n$$
 of a GP = ar^{n-1}

$$S_n$$
 of an $GP = \frac{a(r^n - 1)}{r - 1}$ for $r > 1$ or $\frac{a(1 - r^n)}{1 - r}$ for $r < 1$

$$T_n = S_n - S_{n-1}$$

$$S_{\infty} = \frac{\alpha}{1-r}$$
 for $|r| < 1$

orm of
$$\frac{a}{b}$$
 where a and $b \in \mathbb{N}$

Method 1	Method 2
1. 222222	Let x = 1.222222222
$= 1 + 0 \cdot 2 + 0 \cdot 02 + 0 \cdot 002 + 0 \cdot 0002 + 0 \cdot 00002 + \cdots$	
$=1+\left[\frac{2}{10}+\frac{2}{100}+\frac{2}{1000}+\frac{2}{10000}+\cdots\right]$	10x = 12.22222222
L 00001 0001 001 01	X = 1.222222222
This is an infinite GP with $a = \frac{2}{10}$ and $r = \frac{1}{10}$	9x = 11
$S_{\infty} = \frac{\alpha}{1-r}$	$\therefore X = \frac{1}{9}$
$S_{\infty} = \frac{\frac{2}{10}}{1 - \frac{1}{10}} = \frac{2}{9}$	
$\therefore 1.1 \qquad \qquad$	

Express 1. Form of $\frac{a}{b}$ where a and $b \in \mathbb{N}$

Method 1	Method 2
1. 434343	Let x = 1.43434343
$= 1 + 0 \cdot 43 + 0 \cdot 0043 + 0 \cdot 000043 + \cdots$	
1 43 43 7	100x = 143.43434343
$= 1 + \left[\frac{100}{1000} + \frac{10000}{100000} + \frac{1000000}{1000000}\right]$	x = 1.4343434343
This is an infinite GP with $a = \frac{43}{3}$ and $r = \frac{1}{3}$	99x = 142
100 100	$x = \frac{142}{1}$
$S_{\infty} = \frac{\alpha}{1-r}$	99
$S_{\infty} = \frac{\frac{43}{100}}{1 - \frac{1}{100}} = \frac{43}{99}$	
$\therefore 1.1 \qquad \qquad$	

Other Types of Series

Show that
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Fill in the various values in the square brackets and find the sum to n terms of the series

whose T_n is $\frac{1}{n(n+1)}$

Find the sum of the first 20 terms of the series

Solution

Arithmethico Geometric AP x GP

 $1+2r+3r^2+\cdots$

Find the T_n of the following sequence 2, 8, 24, 64, 160... Find the T_n of the following sequence 1×2, 2×4, 3×8, 4×16, 5×32...

Each term in this sequence is an $AP \times GP$

 T_n of AP = n Combined, $T_n = n(2^n)$

GeoGebra Three Graphs Function Inspector

2012 LCHL Q4

In a science experiment, a quantity Q(t) was observed at various points in time t. Time is measured in seconds from the instant of the first observation. The table below gives the results.

†	0	1	2	3	4
Q(†)	2.920	2.642	2.391	2.163	1.957

Q follows the rule of the form $Q(t) = Ae^{-bt}$, where A and b are constants.

- (a) Use any two of the observations from the table to find the value of A and the value of b, correct to three decimal places.
- (b) Use a different observation from the table to verify your values for A and b.

