Further Exploration of Patterns

Abstracł Quadrafic Patterns

	$a+b+c$		$4 a+2 b+c$		$9 a+3 b+c$		$16 a+4 b+c$

Constant second change, therefore it is quadratic starting with a^{2}.
Write out the $a n^{2}$ series $a, 4 a, 9 a, 16 a, \ldots$ and subtract from the original series.

$$
a+b+c, \quad 4 a+2 b+c, \quad 9 a+3 b+c, \quad 16 a+4 b+c, \quad 25 a+5 b+c, \ldots
$$

$$
\begin{array}{ccccc}
- & a & 4 a & 9 a & 16 a
\end{array}
$$

If you now go down form the $1^{\text {st }}$ term which is $(b+c)-b=c$

The General Term is now $a n^{2}+b n+c$

Generalising Quadratic Sequences

When you get half the $2^{\text {nd }}$ change you get the coefficient of n^{2}

$\rightarrow 4 n^{2} \quad 4, \quad 16, \quad 36, \quad 64, \quad 100, \ldots$
$\longrightarrow 0.5 n^{2} \quad 0.5, \quad 2, \quad 4.5, \quad 8, \quad 12.5, \ldots$
$\begin{array}{llllll}{ }^{\text {st }} \text { change } & 1.5 & 2.5 & 3.5 & 4.5 \\ 2^{\text {nd }} \text { change } & 1 & 1 & 1 & \end{array}$

Your Turn [2.7 pg. 18]

Write the General Formula for the following paterns.
(a) $3, \quad 12,27,48, \quad 75, \ldots$
(b) $\quad 0.25, \quad 1,2.25, \quad 4, \quad 6.25, \ldots$

Solutions:
(a) $3 n^{2} \quad$ (b) $0.25 n^{2}$

More Difficult Quadratic Patterns - Method 1

```
    6, 12, 20, 30, 42,..
1stchange 3 5 5 7 9
2nd change 2 2 2 Therefore it is n}\mp@subsup{n}{}{2}\mathrm{ with other terms.
```

Write out the n^{2} series $1,4,9,16, \ldots$ and subtract from the original series.

$$
\begin{array}{rrrrr}
6, & 12, & 20, & 30, & 42, \ldots \\
-\quad 1, & 4, & 9, & 16, & 25, \ldots \\
\hline 5, & 8, & 11, & 14, & 17, \ldots
\end{array}
$$

${ }^{\text {stt }}$ change $\begin{array}{llll}3 & 3 & 3 & \text { This is linear } 3 n\end{array}$

If you now go down form the ${ }^{\text {lt }}$ term which is $5-3=2$

The general term is now $n^{2}+3 n+2$

More Difficult Quadratic Patterns - Method 2

$6,12,20,30,42, \ldots$

Look for lowest common factor, here it is 2

$$
2 \times 3,3 \times 4,4 \times 5,5 \times 6,6 \times 7, \ldots
$$

This is an $A P \times A P$

First AP
Second AP
$2,3,4,5,6, . . \quad T_{n}=a+(n-1) d=2+(n-1) 1=n+1$
$3,4,5,6,7, \ldots T_{n}=a+(n-1) d=3+(n-1) 1=n+2$

$$
T_{n} \times T_{n}=(n+1)(n+2)=n^{2}+3 n+2
$$

Your Turn [2.8 pg. 18]

Write the General Formula for the following paterns.
(a) $\quad 5, \quad 12, \quad 21, \quad 32, \quad 45$
(b) $5,15,31,53,81$,

Solutions:
(a) $n^{2}+4 n \quad$ (b) $3 n^{2}+n+1$

Your Turn [2.9 pg. 18]

How many blocks are in the $4^{\text {th }}$ pattern?
Write a gerneral formula to find the number of in the $\mathrm{n}^{\text {th }}$ pattern.
How many blocks are in the $8^{\text {th }}$ pattern?

SOLUTION

$\begin{array}{llll}4 & 12 & 24 & 40\end{array}$
$\begin{array}{llll}1 \text { tst change } & 8 & 12 & 16\end{array}$
$2^{\text {nd }}$ change 44 Constant, therefore quadratic

Method 1

```
    4 12 24 40
1st}\mathrm{ change 8 12 16
2nd change 4 4 2 Therefore it is }2\mp@subsup{n}{}{2}\mathrm{ with other terms.
```

Write out the $2 n^{2}$ series $2,8,18,32, \ldots$ and subtract from the original series.

```
        4, 12, 24, 40,...
\[
\begin{array}{llll}
-\quad 2, & 8, & 18, & 32, \ldots \\
\hline 2, & 4, & 6, & 8,
\end{array}
\]
```

$1^{\text {st }}$ change 222 This is linear $3 n$
If you now go down form the $1^{\text {st }}$ term which is $2-2=0$

The general term is now $2 n^{2}+2 n$
$T_{8}=2(8)^{2}+2(8)=144$ blocks

Method 2

4, 12, 24, 40,

Look for lowest common factor, here it is 2 [Looking at length \times breadth]
$2 \times 2,3 \times 4,4 \times 6,5 \times 8$,

This is an $A P \times A P$

First AP $\quad 2,3,4,5, \ldots \quad T_{n}=a+(n-1) d=2+(n-1) 1=n+1$
Second AP $\quad 3,4,5,6,7, \ldots T_{n}=a+(n-1) d=2+(n-1) 2=2 n$
$T_{n} \times T_{n}=(n+1)(2 n)=2 n^{2}+2 n$
$T_{8}=2(8)^{2}+2(8)=144$ blocks

Graphing the Couples

Given you have 20 metres of wire, what is the maximum rectangular shaped area that you can enclose?

Write out the $-n^{2}$ series $-1,-4,-9,-16, \ldots$ and subtract from the original series.

> | 9, | 16, | 21, | $24, \ldots$ |
| ---: | ---: | ---: | ---: |
| $-\quad-1$, | -4, | -9, | $-16, \ldots$ |
| 10, | 20, | 30, | 40, | This is linear $10 n$

The general term for the area is $-n^{2}+10 n$

Geometric

$$
\begin{gathered}
T_{1}=2 \\
T_{2}=4 \\
T_{3}=8 \\
T_{4}=16 \\
\vdots \\
T_{n}=?
\end{gathered}
$$

This is a Geometric Sequence with $T_{1}=2=a$
Each term is multiplied by 2 to get the next term: r(Common Ratio) $=2$

$$
\frac{T_{n}}{T_{n-1}}=r
$$

Finding the T_{n} of a Geometric Sequence

$T_{1}=a$
$T_{2}=a r$
$T_{3}=(a r) r=a r^{2}$
$T_{4}=\left(a r^{2}\right) r=a r^{3}$
$T_{5}=\left(a r^{3}\right) r=a r^{4}$
$:$
$T_{n}=a r^{n-1} \quad$ Exponential

A ball is dropped from a height of 8 m . The ball bounces to 80% of its previous height with each bounce. How high (to the nearest cm) does the ball bounce on the fifth bounce.

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
8,	6.4,	5.12,	4.96	3.2768	2.62144
2.62144 m	$=262 \mathrm{~cm}$				

Is this a Linear, Quadratic or Cubic pattern?

Let's look at the graph of this.

Write down the function which describes the red graph.
What is the total distance travelled by the ball when it hits the ground for the $5^{\text {th }}$ time?

What if we were asked to find the total distance travelled when the ball hits the ground for the $20^{\text {th }}$ time. Is there any general way of doing it?

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Finding the S_{n} of a Geometric Series

$$
\begin{aligned}
& S_{n}=a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots \\
& \frac{r S_{n}}{}=a r+a r^{2}+a r^{3}+a r^{4}+\cdots \\
& S_{n}-r S_{n}=a+0+0+0+0 r^{n} \\
& (1-r) S_{n}=a-a r^{n} \\
& S_{n}=\frac{a-a r^{n}}{1-r} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { or } S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

These formulas can also be proved by Induction

Link to Student's CD

A rabbit is 10 metres away from a some food. It hops 5 metres, then hops 2.5 metres, then 1.25 metres, and so on, hopping half its previous hop each time. What will the length of the $6^{\text {th }}$ hop be?

$5, \quad 2.5, \quad 1.25, \quad 0.625, \quad 0.3125, \ldots$

What type of pattern is this? Discuss

A rabbit is 10 metres away from some food. It hops 5 metres, then hops 2.5 metres, then 1.25 metres, and so on, hopping half its previous hop each time.

If the rabbit kept hopping forever, what in theory would be the total distance travelled by it?

The Sum to Infinity of a GP
For $|r|<1 \quad r^{\infty}=0$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}-\frac{a r^{n}}{1-r} \\
& S_{\infty}=\frac{a}{1-r}-\frac{0}{1-r} \quad \text { as } r^{\infty}=0 \text { for }|r|<1 \\
& S_{\infty}=\frac{a}{1-r} \text { for }|r|<1
\end{aligned}
$$

Extending the Blocks Question

Find the total number of blocks required to make the first 25 patterns.
$T_{n}=2 n^{2}+2 n$
$S_{n}=2 \sum_{r=1}^{n} r^{2}+2 \sum_{r=1}^{n} r$
$S_{n}=2\left[\frac{n(n+1)(2 n+1)}{6}\right]+2\left[\frac{n(n+1)}{2}\right]$
$S_{n}=\left[\frac{n(n+1)(2 n+1)}{3}\right]+n(n+1)$
$S_{25}=\left[\frac{25(25+1)(2(25)+1)}{3}\right]+25(25+1)$
$S_{25}=11,700$

Three Formulae

$$
\sum_{r=1}^{n} r=\frac{n(n+1)}{2} \quad \sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{r=1}^{n} r^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

These formulas can be proved by Induction

Summary of GP formulae

$$
T_{n} \text { of a GP }=a r^{n-1}
$$

S_{n} of an GP $=\frac{a\left(r^{n}-1\right)}{r-1}$ for $r>1$ or $\frac{a\left(1-r^{n}\right)}{1-r}$ for $r<1$

$$
T_{n}=S_{n}-S_{n-1}
$$

$$
S_{\infty}=\frac{a}{1-r} \quad \text { for }|r|<1
$$

Express 1.: orm of $\frac{a}{b}$ where a and $b \in \mathbb{N}$

Method 1	Method 2
$\cdots 222222$	Let $\mathrm{x}=1.222222222 \ldots$
$\begin{aligned} & =1+0.2+0.02+0.002+0.0002+0.00002+\cdots \\ & =1+\left[\frac{2}{10}+\frac{2}{100}+\frac{2}{1000}+\frac{2}{10000}+\cdots\right. \end{aligned}$	$\begin{aligned} 10 x & =12.22222222 \ldots \\ x & =1.222222222 \ldots \end{aligned}$
This is an infinite GP with $a=\frac{2}{10}$ and $r=\frac{1}{10}$	$\begin{aligned} & 9 x=11 \\ & \therefore x=\frac{11}{0} \end{aligned}$
$\begin{aligned} & S_{\infty}=\frac{a}{1-r} \\ & S_{\infty}=\frac{\frac{2}{10}}{1-\frac{1}{10}}=\frac{2}{9} \end{aligned}$	9
$\therefore 1 \therefore \quad y=\frac{11}{9}$	

Express 1.": form of $\frac{a}{b}$ where a and $b \in \mathbb{N}$

Method 1	Method 2
$\begin{aligned} & \cdots \quad 434343 \ldots \\ & =1+0.43+0.0043+0.000043+\cdots \end{aligned}$	Let $x=1.43434343 \ldots$
$=1+\left[\frac{43}{100}+\frac{43}{10000}+\frac{43}{1000000}+\cdots\right]$	$\begin{aligned} 100 x & =143.43434343 \ldots \\ x & =1.4343434343 . \end{aligned}$
This is an infinite GP with $a=\frac{43}{100}$ and $r=\frac{1}{100}$	$\begin{array}{r} 99 x=142 \\ . \quad 142 \end{array}$
$S_{\infty}=\frac{a}{1-r}$	$\therefore x=\frac{19}{99}$
$S_{\infty}=\frac{\frac{43}{100}}{1-\frac{1}{100}}=\frac{43}{99}$	
$\therefore 1 \therefore \quad y y=\frac{142}{9}$	

Other Types of Series

$\frac{1}{A P \times A P}$

Show that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
Fill in the various values in the square brackets and find the sum to n terms of the series
whose T_{n} is $\frac{1}{n(n+1)}$
Find the sum of the first 20 terms of the series
$T_{1}=\frac{1}{[]}-\frac{1}{[]}$
$T_{2}=\frac{1}{[]}-\frac{1}{[]}$
$T_{3}=\frac{1}{[]}-\frac{1}{[\square}$
$T_{n-1}=\frac{1}{[]}-\frac{1}{[]}$
$T_{n}=\frac{1}{[]}-\frac{1}{[\square}$
$S_{n}=$

Solution

$$
\begin{aligned}
& T_{1}=\frac{1}{1}-\frac{1}{2} \\
& T_{2}=\frac{1}{2}-\frac{1}{3} \\
& T_{3}=\frac{y}{3}-\frac{1}{4} \\
& \vdots \% \\
& T_{n-1}=\frac{y}{n-1}-\frac{1}{n} \\
& T_{n}=\frac{1}{n}-\frac{1}{n+1} \\
& S_{n}=1-\frac{1}{n+1} \\
& S_{20}=1-\frac{1}{20+1} \\
& S_{20}=\frac{20}{21}
\end{aligned}
$$

Arithmethico Geometric AP x GP

$$
1+2 r+3 r^{2}+\cdots
$$

Find the T_{n} of the following sequence $2,8,24,64,160 \ldots$
Find the T_{n} of the following sequence $1 \times 2,2 \times 4,3 \times 8,4 \times 16,5 \times 32 \ldots$

Each term in this sequence is an $A P \times G P$
T_{n} of $A P=n$

$$
T_{n} \text { of } G P=2(2)^{n-1}=2^{n}
$$

Combined, $T_{n}=n\left(2^{n}\right)$

GeoGebra Three Graphs Function Inspector

2012 LCHL Q4

In a science experiment, a quantity $Q(t)$ was observed at various points in time t. Time is measured in seconds from the instant of the first observation. The table below gives the results.

t	0	1	2	3	4
$Q(t)$	2.920	2.642	2.391	2.163	1.957

Q follows the rule of the form $Q(t)=A e^{-b t}$, where A and b are constants.
(a) Use any two of the observations from the table to find the value of A and the value of b, correct to three decimal places.
(b) Use a different observation from the table to verify your values for A and b.

