

Syllabus and Resources

Draft

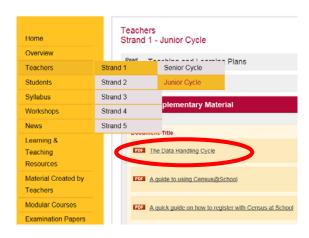
Junior Certificate Strands 1 - 4

The learning outcomes in the syllabus have been matched to resources which are all available on the Project Maths web site www.projectmaths.ie.

Most Teaching & Learning Plans are available by clicking on this icon on the home page.

The Teaching & Learning Plans denoted by * are available under "Material Created by Teachers".

All Teaching & Learning Plans are also available under Teachers, Strand?, Junior Cycle


Patterns: A Relations Approach to Algebra is available by clicking on this icon on the home page.

Teacher Handbooks are available by clicking on this icon on the home page.

The Data Handling Cycle is available under Teachers, Strand 1, Junior Cycle, Supplementary Material.

There are activities on the Student's CD referring to the learning outcomes underlined or circled in blue.

There are hyperlinks to most of the resources referred to in the body of this document.

Appendix: Common Introductory Course for Junior Cycle Mathematics

Handbook

The Common Introductory Course is the minimum course to be covered by all learners at the start of junior cycle. It is intended that the experience of this course will lay the foundation for conceptual understanding which learners can build on subsequently. The order in which topics are introduced is left to the discretion of the teacher. The topics and strands should not be treated in isolation; where appropriate, connections should be made between them. Classroom strategies should be adopted which will encourage students to develop their synthesis and problem-solving skills.

Once the introductory course has been completed, teachers can decide which topics to extend or explore to a greater depth, depending on the progress being made by the class group.

The following table, when read in conjunction with the section on the Bridging Framework for Mathematics (see page 8), may help teachers to prepare teaching and learning plans for the Common Introductory Course in order to facilitate a smooth transition for learners from their mathematics education in the primary school.

Strand /Topic Title	Learning outcomes	
	Students should be able to	
Strand 1: 1.1 Counting	 list all possible outcomes of an experiment 	
	- apply the fundamental principle of counting	
Strand 1: 1.2 Concepts	 decide whether an everyday event is likely or unlikely to occur 	
of probability	 recognise that probability is a measure on a scale of 0 - 1 of how likely an 	
It is expected that the conduct	event is to occur	
of experiments (including		
simulations), both individually		
and in groups, will form the		
primary vehicle through which the		
knowledge, understanding and		
skills in probability are developed.		
Strand 1: 1.5 Finding, collecting	explore different ways of collecting data	
and organising data	 plan an investigation involving statistics and conduct the investigation 	
	 summarise data in diagrammatic form 	
	 reflect on the question(s) posed in light of data collected 	
Strand 1: 1.6 Representing data	 select appropriate graphical or numerical methods to describe the sample 	
graphically and numerically	(univariate data only)	
	use stem and leaf plots, line plots and bar charts to display data	
Strand 2: 2.1 Synthetic geometry	convince themselves through investigation that theorems 1-6 are true	
(see Geometry for Post-primary	 construct 	
School Mathematics)	the bisector of a given angle, using only compass and straight edge	
	the perpendicular bisector of a segment, using only compass and	
The geometrical results should	straight edge	
be first encountered through	4. a line perpendicular to a given line I, passing through a given point on I	
discovery and investigation.	5. a line parallel to a given line I, through a given point	
	6. divide a line segment into 2, 3 equal segments, without measuring it	
	8. a line segment of given length on a given ray	
Strand 2: 2.2 Transformation	use drawings to show central symmetry and axial symmetry	
geometry		
Strand 2: 2.3 Co-ordinate	- coordinate the plane	
geometry	 locate points on the plane using coordinates 	

T&L
Intro to
Fundamental
Principals of
Counting *

<u>T & L s</u> 1, 2, 3, 4 & 5

Student's

CD

Data
Handling
Cycle

T & L Co-ordinate Plane*

Strand /Topic Title

Learning outcomes

Students should be able to

Strand 3: 3.1: Number systems

Students explore the operations of addition, subtraction, multiplication and division and the relationships between these operations – in the first instance with whole numbers and integers. They will explore some of the laws that govern these operations and use mathematical models to reinforce the algorithms they commonly use. Later, they revisit these operations in the contexts of rational numbers and refine and revise their ideas

Students will devise strategies for computation that can be applied to any number. Implicit in such computational methods are generalisations about numerical relationships with the operations being used. Students will articulate the generalisation that underlies their strategy, firstly in common language and then in symbolic language.

T & L Factors & Prime Numbers*

Strand 3: 3.5 Sets

Students learn the concept of a set as being a collection of well-defined objects or elements. They are introduced to the concept of the universal set, null set, subset; the union and intersection operators and to Venn diagrams: simple closed bounded curves that contain the elements of a set.

They investigate the properties of arithmetic as related to sets and solve problems involving sets. investigate models such as decomposition, skip counting, arranging items in arrays and accumulating groups of equal size to make sense of the operations of addition, subtraction, multiplication, and division in N where the answer is in N

- investigate the properties of arithmetic: commutative, associative and distributive laws and the relationships between them, including their inverse operations
- appreciate the order of operations, including use of brackets
- investigate models, such as the number line, to illustrate the operations of addition, subtraction, multiplication and division in Z

generalise and articulate observations of arithmetic operations

- investigate models to help think about the operations of addition, subtraction multiplication and division of rational numbers
- consolidate the idea that equality is a relationship in which two mathematical expressions hold the same value
- analyse solution strategies to problems
- begin to look at the idea of mathematical proof
- calculate percentages
- use the equivalence of fractions, decimals and percentages to compare proportions
- consolidate their understanding and their learning of <u>factors</u>, multiples and prime numbers in **N**
- language and then in symbolic language consolidate their understanding of the relationship between ratio and proportion
 - check a result by considering whether it is of the right order of magnitude
 - check a result by working the problem backwards
 - justify approximations and estimates of calculations
 - present numerical answers to degree of accuracy specified
 - list elements of a set
 - describe the rule that defines a set
 - consolidate the idea that equality is a relationship in which two equal sets have the same elements
 - use the cardinal number terminology when referring to set membership
 - perform the operations of intersection, union (for two sets)
 - investigate the commutative property for intersection and union
 - illustrate sets using Venn diagrams

T&L Integers

T & L

Multiplication

of Fractions

4 T & Ls
Addition &
Subtraction
of Fractions
(Parts 1 & 2),
Equivalent
Fractions,
Partitioning*

3 T & Ls
Intro to
Decimals &
Place Value,
Decimal
Operations,
Percentages*

Strand /Topic Title	Learning outcomes Students should be able to
Strand 4: 4.1Generating arithmetic expressions from repeating patterns	 use tables and diagrams to represent a repeating-pattern situation generalise and explain patterns and relationships in words and numbers
Students examine patterns and the rules that govern them and so construct an understanding of a relationship as that which involves a set of inputs, a set of outputs and a correspondence from each input to each output.	 write arithmetic expressions for particular terms in a sequence
Strand 4: 4.2 Representing situations with tables diagrams and graphs	 use tables, diagrams and graphs as a tool for analysing relations develop and use their own mathematical strategies and ideas and consider those of others
Students examine relations derived from some kind of context – familiar, everyday situations, imaginary contexts or arrangements of tiles or blocks. They look at various patterns and make predictions about what comes next.	 present and interpret solutions, explaining and justifying methods, inferences and reasoning
All Strands Synthesis and problem-solving skills	 explore patterns and formulate conjectures explain findings justify conclusions communicate mathematics verbally and in written form apply their knowledge and skills to solve problems in familiar and unfamiliar contexts analyse information presented verbally and translate it into mathematical form devise, select and use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions.

<u>T & L</u> Patterns

Patterns
A Relations
Approach to
Algebra

Strand 1: Statistics and Probability

Handbook

Topic	Description of topic Students learn about	Learning outcomes Students should be able to
1.1 Counting 1.2 Concepts of probability	Listing outcomes of experiments in a systematic way. The probability of an event occurring: students progress	- list all possible outcomes of an experiment - apply the fundamental principle of counting - decide whether an everyday event is likely or unlikely to occur - recognise that probability is a measure on a scale of 0-1 of
	from informal to formal descriptions of probability. Predicting and determining probabilities. Difference between experimental and theoretical probability.	 now likely an event is to occur use set theory to discuss experiments, outcomes, sample spaces ase the language of probability to discuss events, including those with equally likely outcomes estimate probabilities from experimental data recognise that, if an experiment is repeated, there will be different outcomes and that increasing the number of times an experiment is repeated generally leads to better estimates of probability associate the probability of an event with its long-run, relative frequency
1.3 Outcomes of simple random processes	Finding the probability of equally likely outcomes.	 construct sample spaces for two independent events apply the principle that, in the case of equally likely outcomes, the probability is given by the number of outcomes of interest divided by the total number of outcomes (examples using coins dice spinners, urns with different coloured objects, playing cards, etc.) use binary / counting methods to solve problems involving successive random events where only two possible outcomes apply to each event
1.4 Statistical reasoning with an aim to becoming a statistically aware consumer	The use of statistics to gather information from a selection of the population with the intention of making generalisations about the whole population. They consider situations where statistics are misused and learn to evaluate the reliability and quality of data and data sources.	engage in discussions about the purpose of statistics and recognise misconceptions and misuses of statistics – work with different types of data: categorical: nominal or ordinal
1.5 Finding, collecting and organising data	Formulating a statistics question based on data that vary allows for distinction between different types of data	 clarify the problem at hand formulate one (or more) questions that can be answered with data explore different ways of collecting data generate data, or source data from other sources including the internet select a sample from a population (Simple Random Sample) recognise the importance of representativeness so as to avoid biased samples design a plan and collect data on the basis of above knowledge summarise data in diagrammatic form including spreadshoets

T & L
Intro to
Fundamental
Principals of
Counting *

<u>T & L s</u> 1, 2, 3, 4 & 5

Student's CD

T&L Tossing two Dice *

2 T & Ls Probability using Playing (Deck of) Cards *

> Data Handling Cycle

Topic	Description of topic	Learning outcomes
	Students learn about	Students should be able to
1.6 Representing data graphically and numerically	Methods of representing data. Students develop a sense that data can convey information and that organising data in different ways can help clarify what the data have to tell us. They see a data set as a whole and so are able to use fractions, quartiles and median to describe the data.	Craphical
	Mean of a grouped frequency distribution.	Numerical – use a variety of summary statistics to describe the data: central tendency – mean, median, mode variability – range, quartiles and inter-quartile range – recognise the existence of outliers
1.7 Analysing, interpreting and drawing conclusions from data	Drawing conclusions from data; limitations of conclusions.	 interpret graphical summaries of data relate the interpretation to the original question recognise how sampling variability influences the use of sample information to make statements about the population draw conclusions from graphical and numerical summaries of data, recognising assumptions and limitations
Students learn about 1.8 Synthesis and problem- solving skills	- explore patterns and formulate conjectures - explain findings - justify conclusions - communicate mathematics verbally and in written form	
	 apply their knowledge and skills to solve problems in familiar and unfamiliar contexts analyse information presented verbally and translate it into mathematical form devise, select and use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions. 	

Data Handling Cycle

Student's CD

Problem
Solving
Questions

Strand 2: Geometry and Trigonometry

Topic	Description of topic Students learn about	Learning outcomes Students should be able to
2.1 Synthetic	Concepts (see <i>Geometry Course</i> section 9.1 for OL and 10.1 for	- recall the axioms and use
geometry	HL)	them in the solution of
	Axioms (see Geometry Course section 9.3 for OL and 10.3 for	problems
	HL):	- use the terms: theorem,
	[Two points axiom] There is exactly one line through any two given points.	proof, axiom, corollary, converse and implies
	[Ruler axiom] The properties of the distance between points	
	3. [Protractor Axiom] The properties of the degree measure of	
	an angle	
	Congruent triangles (SAS, ASA and SSS)	
	5. [Axiom of Parallels] Given any line / and a point P, there is	
	exactly one line through P that is parallel to I.	
	Tyleorems: [Formal proofs are not examinable at OL]	
	Vertically opposite angles are equal in measure.	
	2. In an isosceles triangle the angles opposite the equal sides	– apply the results of all
	are equal. Conversely, if two angles are equal, then the	theorems, converses and
	triangle is isosceles.	corollaries to solve problems
	3. If a transversal makes equal alternate angles on two lines	- prove the specified
	then the lines are parallel, (and converse).	theorems
	4. The angles in any triangle add to 180°.	
	5. Two lines are parallel if and only if, for any transversal, the	
	corresponding angles are equal.	
	Each exterior angle of a triangle is equal to the sum of the interior opposite angles.	
	In a parallelogram, opposite sides are equal and opposite angles are equal (and converses).	
	The diagonals of a parallelogram bisect each other.	
	If three parallel lines cut off equal segments on some	
	transversal line, then they will cut off equal segments on	
	any other transversal.	
	12. Let ABC be a triangle. If a line I is parallel to BC and cuts	
	[AB] in the ratio s:t, then it also cuts [AC] in the same	
	ratio (and converse).	
	13. If two triangles are similar, then their sides are	
	proportional, in order (and converse) [statements only at	
	OL].	
	14. [Theorem of Pythagoras] In a right-angled triangle the	
	square of the hypotenuse is the sum of the squares of the	
	other two sides.	
	15. If the square of one side of a triangle is the sum of the	
	squares of the other two sides, then the angle opposite the	
	first side is a right angle.	

19. The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on

[Formal proofs of theorems 4, 6, 9, 14 and 19 are

the same arc.

examinable at Higher level.]

T & Ls 6 & 7

<u>T & L</u>

To show a straight angle contains 180 degrees *

Student's CD

T & L
The Theorem of
Pythagoras *

Topic	Description of topic	Learning outcomes
	Students learn about	Students should be able to
	Corollaries:	
	1. A diagonal divides a parallelogram into 2	
	congruent triangles.	
	2. All angles at points of a circle, standing on the	
	same arc, are equal, (and converse).	
	3. Each angle in a semi-circle is a right angle.	
	4. If the angle standing on a chord [BC] at some point	
	of the circle is a right-angle, then [BC] is a diameter.	
	5. If ABCD is a cyclic quadrilateral, then opposite	
	angles sum to 180°, (and converse).	
	Constructions:	- complete the constructions specified
	Bisector of a given angle, using only compass and	
	straight edge.	
	Perpendicular bisector of a segment, using only	
	compass and straight edge.	
	3. Line perpendicular to a given line I, passing	
	through a given point not on I.	
	Line perpendicular to a given line I, passing through	
	a given point on I.	
	5. Line parallel to a given line, through a given point.	
	6. Division of a line segment into 2 or 3 equal	
	segments, without measuring it.	
	7. Division of a line segment into any number of	
	equal segments, without measuring it.	
	8. Line segment of a given length on a given ray.	
	9. Angle of a given number of degrees with a given ray	
	as one arm.	
	10. Triangle, given lengths of three sides	
	11. Triangle, given SAS data	
	12. Triangle, given ASA data	
	13. Right-angled triangle, given the length of the	
	hypotenuse and one other side.	
	14. Right-angled triangle, given one side and one of the	
	acute angles (several cases).	
	15. Rectangle, given side lengths.	
2.2	Translations, central symmetry and axial symmetry.	- locate axes of symmetry in simple
Transformation		shapes
geometry		recognise images of points and
		objects under translation, central
		symmetry and axial symmetry
		(intuitive approach)

Topic	Description of topic	Learning outcomes	<u>T & L</u>
	Students learn about	Students should be able to	Co-ordinate
2.3 Co-ordinate	Co-ordinating the plane.	 explore the properties of points, 	Plane*
geometry	Properties of lines and line segments including midpoint,	lines and line segments including	
	slope, distance and the equation of a line in the form.	the equation of a line	T & L Distance
	$y - y_1 = m(x - x_1)$		
	y = mx + c		
	ax + by + c = 0 where a , b , c , are integers and m is the slope of the line		
	Intersection of lines.	- find the point of intersection of two lines, including algebraically	
	Parallel and perpendicular lines and the relationships between the slopes.	- find the slopes of parallel and perpendicular lines	
2.4	Right-angled triangles: theorem of Pythagoras.	- apply the result of the theorem of	
Trigonometry		Pythagoras to solve right-angled	
		triangle problems of a simple nature involving heights and distances	<u>T & L</u> 8
	Trigonometric ratios	use trigonometric ratios to solve	
		problems involving angles (integer	
	Working with trigonometric ratios in surd form for	values) between 0° and 90°	
	angles of 30°, 45° and 60°	- solve problems involving surds	
	Right-angled triangles	- solve problems involving right- angled triangles	
	Decimal and DMS values of angles.	- manipulate measure of angles in	
	200	both decimal and DMS forms	
Students	Students should be able to		
learn about			
2.5 Synthesis	explore patterns and formulate conjectures		
and problem-	– explain findings– justify conclusions		
solving skills	- justify conclusions		
	 communicate mathematics verbally and in written form 	Solving	
	apply their knowledge and skills to salve problems in few	nilion and unfamilian contacts	
	apply their knowledge and skills to solve problems in fan analyse information presented verbally and translate it in		Questions
	 apply their knowledge and skills to solve problems in fan analyse information presented verbally and translate it in devise, select and use appropriate mathematical models 	nto mathematical form	Questions

Topic	Description of topic	Learning outcomes	I
	Students learn about	Students should be able to	
3.1 Number	The binary operations of addition, subtraction,	- investigate models such as	
systems	multiplication and division and the relationships	decomposition, skip counting,	
	between these operations, beginning with whole	arranging items in arrays and	
N: the set of	numbers and integers. They explore some of the laws	accumulating groups of equal size	
natural	that govern these operations and use mathematical	to make sense of the operations of	
numbers,	models to reinforce the algorithms they commonly	addition, subtraction, multiplication	
$\mathbf{N} = \{1, 2, 3, 4\}$	use. Later, they revisit these operations in the context	and division, in N where the answer	
Z: the set of	of rational numbers and irrational numbers (R/Q) and	is in N	
integers,	refine, revise and consolidate their ideas.	- investigate the properties	
including 0		of arithmetic: commutative,	
Q: the set of	Students learn strategies for computation that can be	associative and distributive laws	
rational	applied to any numbers; implicit in such computational	and the relationships between them	
numbers	methods are generalisations about numerical	including their inverse operations	
R: the set of real	relationships with the operations being used. Students	- appreciate the order of operations,	
numbers	articulate the generalisation that underlies their	including the use of brackets	
R/Q: the set of	strategy, firstly in the vernacular and then in symbolic	– investigate models such as the	
irrational	language.	number line to illustrate the	<u>T & L</u>
numbers		operations of addition, subtraction,	Integers
	Problems set in context, using diagrams to solve the	multiplication and division in Z	
	problems so they can appreciate how the mathematical		T&L
	concepts are related to real life. Algorithms used to	observations of arithmetic operations	Multiplication
	solve problems involving fractional amounts.	 investigate models to help think 	of Fractions
		about the operations of addition,	OTTTACCIONS
	4 T & Ls	subtraction multiplication and	
	Addition, Subtraction etc of	division of rational numbers	
	Fractions (Parts 1 & 2),	 consolidate the idea that equality 	
	Equivalent Fractions,	is a relationship in which two	
	Partitioning*	mathematical expressions hold the	
		same value	Student's
	3 T & Ls	- analyse solution strategies to	CD
	Intro to Decimals & Place Value,	problems	
	Decimal Operations,	- engage with the idea of	
	Percentages*	mathematical proof	
		- calculate percentages	
		 use the equivalence of fractions, 	
		decimals and percentages to	
		compare proportions	
	<u>T&L</u>	– consolidate their understanding and	
	Factors & Prime	their learning of <u>factors</u> , <u>multiples</u>	
	Numbers*	and prime numbers in N	
		– consolidate their understanding of	T&L
		the relationship between ratio and	Ratio &
		proportion	Proportion
		- check a result by considering	
		whether it is of the right order of	
		magnitude	
		check a result by working the	
		problem backwards	
		justify approximations and estimates	

of calculations

- present numerical answers to degree of accuracy specified

Торіс	Description of topic Students learn about	Learning outcomes Students should be able to
3.2 Indices	Binary operations of addition, subtraction, multiplication and division in the context of numbers in index form.	Students should be able to - use and apply the rules for indices (where $a \in \mathbb{Z}$, $a \neq 0$; $p, q \in \mathbb{N}$): • $a^p a^q = a^{p+q}$ • $\frac{a^p}{a^q} = a^{p+q} p > q$ • $(a^p)^q = a^{pq}$ - use and apply rules for indices (where $a, b \in \mathbb{R}$, $a, b \neq 0$; $p, q \in \mathbb{Q}$; $a^p, a^q, \in \mathbb{R}$; complex numbers not included): • $a^p a^q = a^{p+q}$ • $\frac{a^p}{a^q} = a^{p+q}$ • $\frac{a^p}{a^q} = a^{p+q}$ • $a^0 = 1$ • $(a^p)^q = a^{pq}$ • $a^1q = \sqrt[q]{a^p} = (\sqrt[q]{a})^p p, q \in \mathbb{Z}, q \neq 0, a > 0$ • $a^p = \frac{1}{a^p}$ • $(ab)^p = a^p b^p$ • $(\frac{a}{b})^p = \frac{a^p}{b^p}$ - add, subtract and multiply numbers in the form $a + \sqrt{b}$ where $a \in \mathbb{Q}$, $b \in \mathbb{Q}^+$ - operate on the set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ - use the notation a^{16} , $a \in \mathbb{N}$ - express rational numbers ≥1 in the approximate form a x10 ⁿ , where a is in decimal form correct to a specified number of places and where $n = 0$ or $n \in \mathbb{N}$ - express non-zero positive rational numbers in the approximate form $a \times 10^n$, where $a \times 10^n$ compute reciprocals
3.3 Applied arithmetic	Solving problems involving, e.g., mobile phone tariffs, currency transactions, shopping, VAT and meter readings. Making value for money calculations and judgments. Using ratio and proportionality.	 solve problems that involve finding profit or loss, % profit or loss (on the cost price), discount, % discount, selling price, compound interest for not more than 3 years, income tax (standard rate only), net pay (including other deductions of specified amounts) solve problems that involve cost price, selling price, loss, discount, mark up (profit as a % of cost price), margin (profit as a % of selling price) compound interest, income tax and net pay (including other deductions)

Торіс	Description of topic Students learn about	Learning outcomes Students should be able to
3.4 Applied measure	Measure and time. 2D shapes and 3D solids, including nets of solids (two-dimensional representations of three-dimensional objects). Using nets to analyse figures and to distinguish between surface area and volume. Problems involving perimeter, surface area and volume. Modelling real-world situations and solve a variety of problems (including multi-step problems) involving surface areas, and volumes of cylinders and prisms . Students learn about the circle and develop an understanding of the relationship between its circumference, diameter and π.	 calculate, interpret and apply units of measure and time solve problems that involve calculating average speed, distance and time investigate the nets of rectangular solids find the volume of rectangular solids and cylinders find the surface area of rectangular solids identify the necessary information to solve a problem select and use suitable strategies to find length of the perimeter and the area of the following plane figures: disc, triangle, rectangle, square, and figures made from combinations of these draw and interpret scaled diagrams investigate nets of prisms (polygonal bases) cylinders and cones solve problems involving surface area of triangular base prisms (right angle, isosceles, equilateral), cylinders and cones solve problems involving curved surface area of cylinders, cones and spheres perform calculations to solve problems involving the volume of rectangular solids, cylinders, cones, triangular base prisms (right angle, isosceles, equilateral), spheres and combinations of these

Topic	Description of topic Students learn about	Learning outcomes Students should be able to
3.5 Sets	Set language as an international symbolic mathematical tool; the concept of a set as being a well-defined collection of objects or elements. They are introduced to the concept of the universal set, null set, subset, cardinal number; the union, intersection, set difference operators, and Venn diagrams. They investigate the properties of arithmetic as related to sets and solve problems involving sets.	use suitable set notation and terminology - list elements of a set - describe the rule that defines a set - consolidate the idea that equality is a relationship in which two equal sets have the same elements - perform the operations of intersection, union (for two sets), set difference and complement - investigate the commutative property for intersection, union and difference - explore the operations of intersection, union (for three sets), set difference and complement - investigate the associative property for intersection, union and difference - investigate the distributive property of union over intersection and intersection over union.
Students learn about	Students should be able to	
3.6 Synthesis and problem- solving skills	explore patterns and formulate conjectures explain findings justify conclusions communicate mathematics verbally and in written form apply their knowledge and skills to solve problems in far analyse information presented verbally and translate it in devise, select and use appropriate mathematical models information and to draw relevant conclusions.	nto mathematical form

Student's CD

Problem
Solving
Questions

Topic	Description of topic	Learning outcomes	
	Students learn about	Students should be able to	
4.1 Generating arithmetic expressions from repeating patterns	Patterns and the rules that govern them; students construct an understanding of a relationship as that which involves a set of inputs, a set of outputs and a correspondence from each input to each output. Relations derived from some kind of context —	use tables to represent a repeating-pattern situation – generalise and explain patterns and relationships in words and numbers – write arithmetic expressions for particular terms in a sequence	
Representing situations with tables, diagrams and graphs	familiar, everyday situations, imaginary contexts or arrangements of tiles or blocks. Students look at various patterns and make predictions about what comes next.	 use tables, diagrams and graphs as tools for representing and analysing linear, quadratic and exponential patterns and relations (exponential relations limited to doubling and tripling) develop and use their own generalising strategies and ideas and consider those of others present and interpret solutions, explaining and justifying methods, inferences and reasoning 	
4.3 Finding formulae	Ways to express a general relationship arising from a pattern or context.	- find the underlying formula written in words from which the data is derived (linear relations) - find the underlying formula algebraically from which the data is derived (linear, quadratic relations)	
4.4 Examining algebraic relationships	Features of a relationship and how these features appear in the different representations. Constant rate of change: linear relationships. Non-constant rate of change: quadratic relationships. Proportional relationships.	 show that relations have features that can be represented in a variety of ways distinguish those features that are especially useful to identify and point out how those features appear in different representations: in tables, graphs, physical models, and formulas expressed in words, and algebraically use the representations to reason about the situation from which the relationship is derived and communicate their thinking to others recognise that a distinguishing feature of quadratic relations is the way change varies discuss rate of change and the y-intercept, consider how these relate to the context from which the relationship is derived, and identify how they can appear in a table, in a graph and in a formula decide if two linear relations have a common value (decide if two lines intersect and where the intersection occurs) investigate relations of the form y=mx and y=mx +c recognise problems involving direct proportion and identify the necessary information to solve them 	

<u>T & L</u> Patterns

Patterns
A Relations
Approach to
Algebra

Topic	Description of topic	Learning outcomes
	Students learn about	Students should be able to
4.5 Relations without formulae	Using graphs to represent phenomena quantitatively.	explore graphs of motion make sense of quantitative graphs and draw conclusions from them make connections between the shape of a graph and the story of a phenomenon describe both quantity and change of quantity on a graph
4.6 Expressions	Using letters to represent quantities that are variable. Arithmetic operations on expressions; applications to real life contexts. Transformational activities: collecting like terms, simplifying expressions, substituting, expanding and factoring.	evaluate expressions of the form $\frac{ax+by}{a(x+y)} = \frac{a(x+y)}{a(x+by)}$ $\frac{a(x+y)}{cx+dy} = \frac{ax^2+bx+c}{ax^2+bx+c}$ $\frac{axy}{cx+dy} = \frac{axy}{cx+dy}$ where $a, b, c, d, x, y \in \mathbb{Z}$ add and subtract simple algebraic expressions of forms such as: $(ax+by+c) \pm (dx+ey+f)$ $(ax^2+bx+c) \pm (dx^2+ex+f)$ $\frac{ax+b}{c} \pm \frac{dx+e}{f}$ where $a, b, c, d, e, f \in \mathbb{Z}$ $\frac{ax+b}{c} \pm \dots \pm \frac{dx+e}{f}$ $(ax+by+c) \pm \dots \pm (dx^2+ex+f)$ $(ax^2+bx+c) \pm \dots \pm (dx^2+ex+f)$ where $a, b, c, d, e, f \in \mathbb{Z}$ $\frac{a}{bx+c} \pm \frac{p}{qx+r}$ where $a, b, c, f, e, f \in \mathbb{Z}$ $\frac{a}{bx+c} \pm \frac{p}{qx+r}$ where $a, b, c, f, f,$

Topic	Description of topic Students learn about	Learning outcomes Students should be able to
4.7 Equations and inequalities	Using a variety of problem-solving strategies to solve equations and inequalities. They identify the necessary information, represent problems mathematically, making correct use of symbols, words, diagrams, tables and graphs.	consolidate their understanding of the concept of equality – solve first degree equations in one or two variables, with coefficients elements of Z and solutions also elements of Z – solve first degree equations in one or two variables with coefficients elements of Q and solutions also in Q – solve quadratic equations of the form $x^2 + bx + c = 0$ where b , $c \in \mathbf{Z}$ and $x^2 + bx + c$ is factorisable $ax^2 + bx + c = 0$ where a , b , $c \in \mathbf{Q}$ $x \in \mathbf{R}$ – form quadratic equations given whole number roots – solve simple problems leading to quadratic equations – solve equations of the form $\frac{ax + b}{c} \pm \frac{dx + e}{f} = \frac{g}{h}, \text{ where } a, b, c, d, e, f, g, h \in \mathbf{Z}$ – solve linear inequalities in one variable of the form $g(x) \le k$ where $g(x) = ax + b$, $a \in \mathbf{N}$ and b , $k \in \mathbf{Z}$; $k \le g(x) \le h$ where $g(x) = ax + b$, and k , a , b , h , c c and c
Students should learn about	Students should be able	e to
4.8 Synthesis and problem-solving skills	explore patterns and fo – explain findings – justify conclusions	ormulate conjectures

- apply their knowledge and skills to solve problems in familiar and unfamiliar contexts

- devise, select and use appropriate mathematical models, formulae or techniques to process

- analyse information presented verbally and translate it into mathematical form

- communicate mathematics verbally and in written form

information and to draw relevant conclusions.

T & Ls
Equations
&
Quadratic
Equations

Student's CD

Problem
Solving
Questions

APPENDIX

Other Resources not mentioned already: All available on www.projectmaths.ie

Booklet to accompany Student's CD. Click on this icon.

Notes from Modular Courses on Strand 1 Content, Strand 2 Content and ICT

Teachers

Strand 1

Junior Cycle

Supplementary Material

A Guide to using Census@School

Teachers

Strand 2

Junior Cycle

Supplementary Material

Theorems in your own words

Student Activities on Theorems 13 & 15

Teachers

Strand 3

Junior Cycle

Supplementary Material

Fractions Powerpoint Presentation

A History of Fractions Percentage Dominos Fractions Diagnostic Test

Workshops

Workshop 5

Downloadable Resources

Algebra Worksheets

Materials Created by Teachers Strand 2

Junior Cycle

Exploring the Distance Formula

Other useful websites

NCCA Student Resources including Revision Material www.ncca.ie/projectmaths

Census@School <u>www.censusatschool.ie</u>

National Centre for Excellence in Mathematics and Science Teaching & Learning www.nce-mstl.ie