

Syllabus and Resources

Leaving Certificate Strands 1 - 4

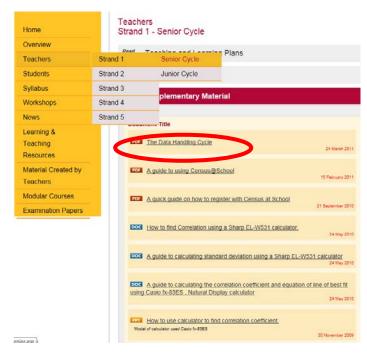
The learning outcomes in the syllabus have been matched to resources which are all available on the Project Maths web site www.projectmaths.ie.

Most Teaching & Learning Plans are available by clicking on this icon on the home page.

The Teaching & Learning Plans denoted by * are available under "Material Created by Teachers".

Material Created by Teachers

<u>All</u> Teaching & Learning Plans are also available under Teachers, Strand X, Senior Cycle


Patterns: A Relations Approach to Algebra is available by clicking on this icon on the home page.

Teacher Handbooks are available by clicking on this icon on the home page.

The Data Handling Cycle and other documents referred to in Strand 1 are available under Teachers, Strand 1, Senior Cycle, Supplementary Material.

There are activities on the Student's CD referring to the learning outcomes underlined or circled in blue. Some of these are in the Junior Certificate section.

There are hyperlinks to most of the resources referred to in the body of this document.

Strand 1: Statistics and Probability

Handbook

	Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to	
Fur Pri	1.1 Counting T & L Intro to Indamental Incipals of Dounting *	list outcomes of an experiment apply the fundamental principle of counting	count the arrangements of <i>n</i> distinct objects (<i>n!</i>) - count the number of ways of arranging <i>r</i> objects from <i>n</i> distinct objects	count the number of ways of selecting <i>r</i> objects from <i>n</i> distinct objects	2 T & Ls Permutations, Combinations and Probability & Permutations leading to Combinations*
	1.2 Concepts of probability	event is likely or unlikely to occur - recognise that probability is a measure on a scale of 0-1 of how likely an event is to occur - use set theory; discuss experiments, outcomes, sample spaces - use the language of probability to discuss events, including those with equally likely outcomes - estimate probabilities from experimental data - recognise that, if an experiment is repeated, there will be different outcomes and that increasing the number of times an experiment is repeated generally leads to better estimates of probability - associate the probability of an event with its long run relative frequency	- discuss basic rules of probability (AND/OR, mutually exclusive) through the use of Venn diagrams - calculate expected value and understand that this does not need to be one of the outcomes - recognise the role of expected value in decision making and explore the issue of fair games	 extend their understanding of the basic rules of probability (AND/OR, mutually exclusive) through the use of formulae Addition Rule: P(A ∪ B) = P(A) + P(B) – P(A ∩ B) Multiplication Rule (Independent Events): P(A ∩ B) = P(A) × P(B) Multiplication Rule (General Case): P(A ∩ B) = P(A) × P(B A) solve problems involving conditional probability in a systematic way appreciate that in general P(A B) ≠ P(B A) examine the implications of P(A B) ≠ P(B A) in context 	T & L 1, 2, 3, 4 & 5 Student's CD
	1.3 Outcomes of random processes	- construct sample spaces for two independent events - apply the principle that in the case of equally likely outcomes the probability is given by the number of outcomes of interest divided by the total number of outcomes (examples using coins, dice, spinners, urns with coloured objects playing cards, etc.) 2 T & Ls	 find the probability that two independent events both occur apply an understanding of Bernoulli trials* solve problems involving up to 3 Bernoulli trials calculate the probability that the 1st success occurs on the nth Bernoulli trial where n is specified 	 solve problems involving calculating the probability of <i>k</i> successes in <i>n</i> repeated Bernoulli trials (normal approximation not required) calculate the probability that the <i>k</i>th success occurs on the <i>n</i>th Bernoulli trial use simulations to explore the variability of sample statistics from a known population and to construct sampling distributions solve problems involving reading probabilities from the normal 	T&L Binomial Distribution *
	Probabl	lity using Playing (Deck of) Cards *	77 to openited	distribution tables	

^{*}A Bernoulli trial is an experiment whose outcome is random and can be either of two possibilities: "success" or "failure".

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
1.4 Statistical reasoning with an aim to becoming a statistically aware consumer	 engage in discussions about the purpose of statistics and recognise misconceptions and misuses of statistics discuss populations and samples decide to what extent conclusions can be generalised work with different types of data: categorical: nominal or ordinal numerical: discrete or continuous in order to clarify the problem 	 work with different types of bivariate data 	
1.5 Finding, collecting and organising data	at hand - clarify the problem at hand - formulate one (or more) questions that can be answered with data - explore different ways of collecting data - generate data, or source data from other sources including the internet - select a sample (Simple Random Sample) - recognise the importance of representativeness so as to avoid biased samples - design a plan and collect data on the basis of above	- discuss different types of studies: sample surveys, observational studies and designed experiments - design a plan and collect data on the basis of above knowledge	- recognise the importance of randomisation and the role of the control group in studies - recognise biases, limitations and ethical issues of each type of study - select a sample (stratified, cluster, quota – no formulae required, just definitions of these) - design a plan and collect data on the basis of above knowledge

Data
Handling
Cycle

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
	Graphical - select appropriate graphical or numerical	at OL should be able to Graphical - describe the sample (both univariate and bivariate data) by selecting appropriate graphical or numerical methods - explore the distribution of	
		Numerical - recognise standard deviation and interquartile range as measures of variability - use a calculator to calculate standard deviation - find quartiles and the interquartile range	

use the interquartile

analysing data

outliers

range appropriately when

- recognise the existence of

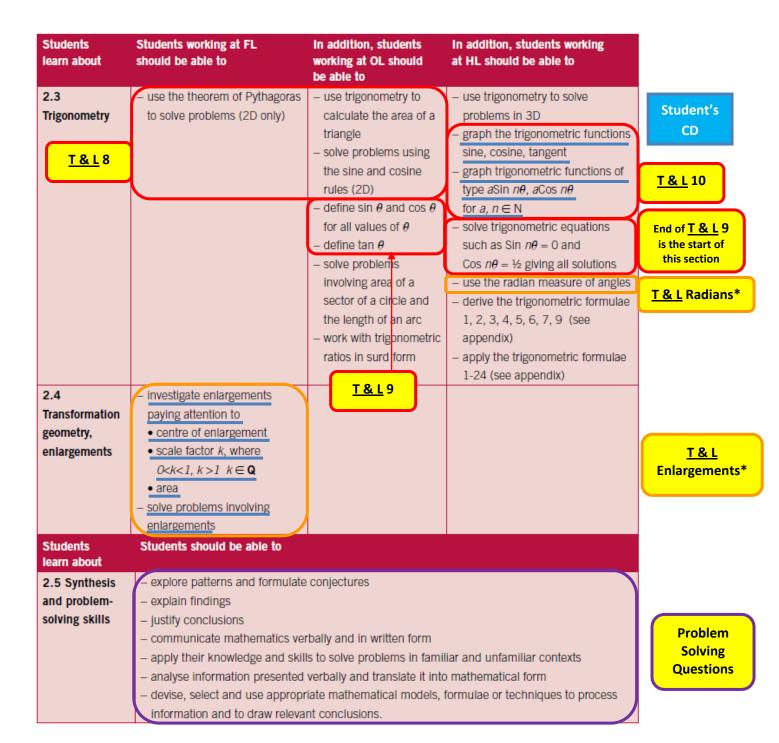
Data Handling Cycle

T & L
Correlation
Coefficient

Document (Supplementary Material)

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
1.7 Analysing, interpreting and drawing inferences from data*	- recognise how sampling variability influences the use of sample information to make statements about the population - use appropriate tools to describe variability, drawing inferences about the population from the sample - interpret the analysis - relate the interpretation to the original question	- interpret a histogram in terms of distribution of data - make decisions based on the empirical rule	 recognise the concept of a hypothesis test calculate the margin of error (¹√w) for a population proportion conduct a hypothesis test on a population proportion using the margin of error
Students learn about	Students should be able to		
1.8 Synthesis and problem- solving skills	hesis – explore patterns and formulate conjectures – explain findings		

^{*} The final syllabus will contain additional material in this section, which has been deferred for an interim peroiod until students coming through to senior cycle have completed the relevant revised syllabus material in the iunior cycle.


Problem
Solving
Questions

Strand 2: Geometry and Trigonometry

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
2.1 Synthetic geometry *	- perform constructions 18, 19, 20 (see Geometry for Post-primary School Mathematics) - perform constructions 18, 19, 20 (see Geometry for Post-primary School Mathematics)	- perform constructions 16, 17, 21 (see Geometry for Post- primary School Mathematics) - use the following terms related to logic and deductive reasoning: theorem, proof, axiom, corollary, converse, implies - investigate theorems 7, 8, 11, 12, 13, 16, 17, 18, 20, 21 and corollary 6 (see Geometry for Post-primary School Mathematics) and use them to solve problems	 perform constructions 1-15 and 22 (see Geometry for Post-primary School Mathematics) use the following terms related to logic and deductive reasoning: is equivalent to, if and only if, proof by contradiction prove theorems 11, 12, 13, concerning ratios (see Geometry for Post-primary School Mathematics), which lay the proper foundation for the proof of the theorem of Pythagoras studied at junior cycle
2.2 Co-ordinate geometry	 use slopes to show that two lines are parallel perpendicular recognise the fact that the relationship ax + by + c = 0 is linear solve problems involving slopes of lines 	 calculate the area of a triangle recognise that (x-h)² + (y-k)² = r² represents the relationship between the x and y co-ordinates of points on a circle centre (h, k) and radius r solve problems involving a line and a circle with centre (0, 0) 	 solve problems involving the perpendicular distance from a point to a line the angle between two lines divide a line segment internally in a given ratio m:n recognise that x²+y²+2gx+2fy+c = 0 represents the relationship between the x and y co-ordinates of points on a circle centre (-g,-f) and radius r where r = √ (g²+f² - c) solve problems involving a line and a circle

^{*} In the examination, candidates will have the option of answering a question on the synthetic geometry set out here, or answering a problem-solving question based on the geometrical results from the corresponding syllabus level at Junior Certificate. This option will apply for a three year period only, for candidates sitting the Leaving Certificate examination in 2012, 2013 and 2014. There will be no choice after that stage.

Student's CD

Strand 3: Number

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
3.1 Number systems	 recognise irrational numbers and appreciate that R≠Q revisit the operations of addition, multiplication, subtraction and division in the following domains: N of natural numbers Z of integers Q of rational numbers R of real numbers and represent these numbers on a number line appreciate that processes can generate sequences of numbers or objects investigate patterns among these sequences use patterns to continue the sequence generate rules/formulae from those patterns develop decimals as special equivalent fractions strengthening the connection between these numbers and fraction and place value understanding consolidate their understanding of factors, multiples, prime numbers in N express numbers in terms of their prime factors appreciate the order of operations, including brackets express non-zero positive rational numbers in the form a x10ⁿ, where n ∈ N and 1 ≤ a < 10 and perform arithmetic operations on numbers in this form 	 work with irrational numbers investigate the operations of addition, multiplication, subtraction and division with complex numbers C in the form a+ib illustrate complex numbers on an Argand diagram interpret the modulus as distance from the origin on an Argand diagram and calculate the complex conjugate generalise and explain patterns and relationships in algebraic form recognise whether a sequence is arithmetic, geometric or neither find the sum to n terms of an arithmetic series express non-zero positive rational numbers in the form a x10ⁿ, where n ∈ Z and 1 ≤ a < 10 and perform arithmetic operations on numbers in this form 2 T & Ls Arithmetic Sequences Arithmetic Series 	 geometrically construct √2 and √3 calculate conjugates of sums and products of complex numbers verify and justify formulae from number patterns investigate geometric sequences and series prove by induction simple identities such as the sum of the first n natural numbers and the sum of a finite geometric series simple inequalities such as n! > 2n 2n 2n > n² (n ≥ 4) (1+x)n² ≥ 1+nx (x > -1) factorisation results such as 3 is a factor of 4n²-1 apply the rules for sums, products, quotients of limits find by inspection the limits of sequences such as lim n+1; lim n² r <1 solve problems involving finite and infinite geometric series including applications such as recurring decimals and financial applications. e.g. deriving the formula for a mortgage repayment derive the formula for the sum to infinity of geometric series by considering the limit of a sequence of partial sums

T & L Complex Numbers

Student's CD

T&L Patterns

Patterns
A Relations
Approach to
Algebra

3 T & Ls Intro to Decimals & Place Value, Decimal Operations, Percentages*

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
3.2 Indices	 solve problems using the rules for indices (where a ∈ Q, p, q ∈ N; a ≠ 0): a^p a^q = a^{p+q} a^p/a^q = a^{p-q} p>q (a^p)^q = a^{pq} a⁰ = 1 	- solve problems using the rules for indices (where $a, b \in \mathbf{R}$; $p, q \in \mathbf{Q}$; $a^p, a^q \in \mathbf{Q}$; $a, b \neq 0$): • $a^p a^q = a^{p+q}$ • $\frac{a^p}{a^q} = a^{p-q}$ • $a^0 = 1$ • $(a^p)^q = a^{pq}$ • $a^{\frac{1}{q}} = \sqrt[q]{a} q \in \mathbf{Z}, \ q \neq 0, a > 0$ • $a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p \ p, q \in \mathbf{Z}, \ q \neq 0, a > 0$ • $a^{-p} = \frac{1}{a^p}$ • $(ab)^p = a^p b^p$ • $(\frac{a}{b})^p = \frac{a^p}{b^p}$	- solve problems using the rules of logarithms • $\log_a(xy) = \log_a x + \log_a y$ • $\log_a(\frac{x}{y}) = \log_a x - \log_a y$ • $\log_a x^q = q \log_a x$ • $\log_a a = 1$ and $\log_a 1 = 0$ • $\log_a x = \frac{\log_b x}{\log_b a}$
3.3 Arithmetic	 check a result by considering whether it is of the right order of magnitude and by working the problem backwards; round off a result make and justify estimates and approximations of calculations; calculate percentage error and tolerance calculate average rates of change (with respect to time) solve problems involving finding depreciation (reducing balance method) costing: materials, labour and wastage metric system; change of units; everyday imperial units (conversion factors provided for imperial units) estimate of the world around them, e.g. how many books in a library 	- accumulate error (by addition or subtraction only) - solve problems that involve calculating cost price, selling price, loss, discount, mark up (profit as a % of cost price), margin (profit as a % of selling price), compound interest, depreciation (reducing balance method), income tax and net pay (including other deductions)	- use present value when solving problems involving loan repayments and investments

Student's CD

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
3.4 Length, area and volume	- select and use suitable strategies to find • length of the perimeter and the area of the following plane figures: parallelogram, trapezium, and figures made from combinations of these • surface area and volume of the following solid figures: cylinder, right cone, right prism and sphere - use the Trapezoidal Rule to approximate area - investigate the nets of prisms (polygonal bases), cylinders and cones	 solve problems involving the length of the perimeter and the area of plane figures: disc, triangle, rectangle, square, parallelogram, trapezium, sectors of discs, and figures made from combinations of these solve problems involving surface area and volume of the following solid figures: rectangular block, cylinder, right cone, triangular-based prism (right angle, isosceles and equilateral), sphere, hemisphere, and solids made from combinations of these 	

Student's CD

Students learn about

Students will be able to

3.5 Synthesis and problemsolving skills

- explore patterns and formulate conjectures
- explain findings
- justify conclusions
- communicate mathematics verbally and in written form
- apply their knowledge and skills to solve problems in familiar and unfamiliar contexts
- analyse information presented verbally and translate it into mathematical form
- devise, select and use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions.

Problem
Solving
Questions

Students	Students working at FL should	In addition, students working at OL	In addition, students working
learn about	be able to	should be able to	at HL should
4.1 Expressions	evaluate expressions given the value of the variables expand and simplify expressions	 factorise expressions of order 2 add and subtract expressions of the form (ax+by+c)±± (dx+ey+f) (ax²+bx+c)±± (dx²+ex+f) where a,b,c,d,e,f ∈ Z a/bx+c/px+r/px+r where a,b,c,p,q,r ∈ Z use the associative and distributive properties to simplify expressions of the form (bx+cy+d)++ e(fx+gy+h) (x±y)(w±z) rearrange formulae 	perform the arithmetic operations of addition, subtraction, multiplication and division on polynomials and rational algebraic expressions paying attention to the use of brackets and surds
4.2 Solving equations	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to equations of the form: f(x) = g(x) with f(x) = ax+b, g(x) = cx+d where a, b, c, d ∈ Z f(x) = 0 with f(x) = ax² + bx + c where b² ≥ 4ac; a, b, c ∈ Z and interpret the results 	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to equations of the form: f(x) = g(x) with f(x) = ax+b, g(x) = cx+d where a. b. c. d ∈ Q f(x) = g(x) with f(x) = a / bx+c ± q / px+r; g(x) = e / f where a, b, c, d, e, f, p, q, r ∈ Z f(x) = k with f(x) = ax² + bx + c (and not necessarily factorisable) where a, b, c ∈ Q and interpret the results select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to simultaneous linear equations with two unknowns and interpret the results one linear equation and one equation of order 2 with two unknowns (restricted to the case where either the coefficient of x or the coefficient of y is ± 1 in the linear equation) and interpret the results form quadratic equations given whole number roots 	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to equations of the form: f(x) = g(x) with f(x) = ax+b/ex+f ± cx+b/px+q; g(x) = k where a, b, c, d, e, f, p, q ∈ Z use the Factor Theorem for polynomials select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to cubic equations with at least one integer root simultaneous linear equations with three unknowns one linear equation and one equation of order 2 with two unknowns and interpret the results

Student's CD

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should
4.3 Inequalities	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form: g(x) ≤ k, g(x) ≥ k, g(x) < k, g(x) > k, where g(x) = ax + b and a, b, k ∈ Z 	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form: g(x) ≤ k, g(x) ≥ k, g(x) < k, g(x) < k, g(x) > k, where g(x) = ax + b and a b, k ∈ Q 	 select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form: g(x) ≤ k, g(x) ≥ k, g(x) ≥ k, g(x) < k, g(x) < k, where g(x) = ax² + bx + c or g(x) = ax+b/cx+d and a, b, c, d, k ∈ Q, x ∈ R use notation x select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form: x - a < b, x - a > b and combinations of these, where a, b ∈ Q, x ∈ R
4.4 Complex Numbers		See strand 3, section 3.1	 use the Conjugate Root Theorem to find the roots of polynomials work with complex numbers in rectangular and polar form to solve quadratic and other equations including those in the form Zⁿ = a, where n ∈ Z and z = r Cos θ + iSin θ use De Moivre's Theorem prove De Moivre's Theorem by induction for n ∈ N use applications such as nth roots of unity, n ∈ N and identities such as Cos 3θ - 3 Cos θ

Students learn about 4.5 Synthesis and problemsolving skills - explore patterns and formulate conjectures - explain findings - justify conclusions - communicate mathematics verbally and in written form - apply their knowledge and skills to solve problems in familiar and unfamiliar contexts - analyse information presented verbally and translate it into mathematical form - devise, select and use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions.

Student's CD

Problem
Solving
Questions

APPENDIX

Other Resources not mentioned already: All available on www.projectmaths.ie

Booklet to accompany Student's CD. Click on this icon.

Notes from Modular Courses on Strand 1 Content, Strand 2 Content and ICT

Teachers

Strand 1

Senior Cycle

Supplementary Material

A Guide to using Census@School

Teachers

Strand 2

Senior Cycle

Supplementary Material

Theorems in your own words

Student Activities on Theorems 7, 8, 13, 15 & 21

Materials Created by Teachers
Strand 1

Senior Cycle

An Introduction to Statistics & Data Handling

Tossing 2 Dice

Paired Data & Correlation Coefficient

Scatter Plots

Strand 2

Senior Cycle

The Theorem of Pythagoras Exploring the Distance Formula

Other useful websites

NCCA Student Resources including Revision Material www.ncca.ie/projectmaths

Census@School www.censusatschool.ie

National Centre for Excellence in Mathematics and Science Teaching & Learning www.nce-mstl.ie