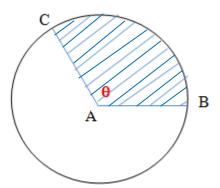
## Radian Measure Activity Sheet 2

- 1) An identity already derived (in Q 11 on Activity Sheet 1) was that  $\pi$  radians = 180°. This identity is very useful to easily convert degrees to radians or radians to degrees.
- (i) Use the identity  $\pi$  radians = 180° as your starting point show how to convert:
- (a) 200° to radians

(b)  $\frac{7\pi}{6}$ 

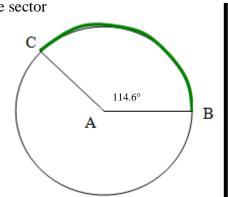
(c) 1½ radians to degrees

(ii) Convert each of the following to degrees to radians or radians to degrees as required.

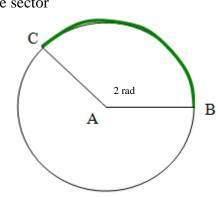

|   | Radians | Degrees |    | Radians                  | Degrees |
|---|---------|---------|----|--------------------------|---------|
| 1 |         | 60°     | 10 | $\pi$                    |         |
|   |         |         |    | $\frac{\overline{4}}{4}$ |         |
| 2 |         | 30°     | 11 | $\pi$                    |         |
|   |         |         |    | $\frac{\pi}{3}$          |         |
| 3 |         | 70°     | 12 | $\frac{2\pi}{5}$         |         |
|   |         |         |    |                          |         |
| 4 |         | 120°    | 13 | $5\pi$                   |         |
|   |         |         |    | 4                        |         |
| 5 |         | 80°     | 14 | $\frac{5\pi}{6}$         |         |
|   |         |         |    | 6                        |         |
| 6 |         | 75°     | 15 | 4π                       |         |
| 7 |         | 12°     | 16 | 2                        |         |
| 8 |         | 300°    | 17 | 4.5                      |         |
| 9 |         | 720°    | 18 | 6                        |         |

| 2) (a) Draw any circle and <b>construct</b> an angle of 2 radians                                                 |
|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| (b) Using the identity derived at Q10 on Activity Sheet 1 find the length of the arc of this angle algebraically. |
| angle argeorateany.                                                                                               |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| (c) Using a protractor, measure the size of this angle in degrees                                                 |
|                                                                                                                   |
| Comment on whether this is the degree measure you expected:                                                       |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |

| 3)  | (a) Construct a circle of radius 5cm (b) Construct an arc of 20cm on this circle.                              |
|-----|----------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                |
|     |                                                                                                                |
|     |                                                                                                                |
|     |                                                                                                                |
|     |                                                                                                                |
|     |                                                                                                                |
|     | (c) Write down the size of the angle subtended at the centre of this circle in radians                         |
| alg | (d) Using the identity from derived at <i>Q10 on Activity Sheet 1</i> verify your answer from (c) gebraically. |
|     |                                                                                                                |
|     |                                                                                                                |


4) The diagram shows a shaded sector ABC . Show how the identity, Area of Sector =  $\frac{1}{2}$   $r^2\theta$  is derived, where r is the length of the radius. and  $\theta$  is the angle of the sector measured in radians

**Hint:** Area of Sector = Area of full circle  $\times$   $\frac{\text{Angle (in radians)}}{\text{Full circle(in radians)}}$ 




5) (a) This question looks at the area of a sector of a circle circle. It investigates using both degrees and radians to get the area of a sector and compares the answers.

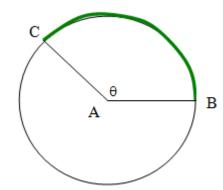
Calculate the area of the sector of angle 114.6° in a circle of radius 7cm.



Calculate the area of the sector of angle 2 radians in a circle of radius 7cm.



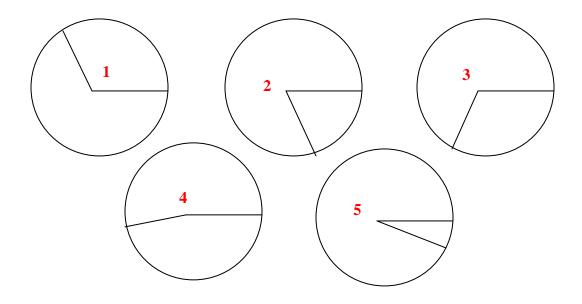
Area of sector = \_\_\_\_\_


Area of sector = \_\_\_\_\_

| (b) Why were | 114.6° | and 2 | radians | used | ? |
|--------------|--------|-------|---------|------|---|
|--------------|--------|-------|---------|------|---|

|    | _           |       |       |          |
|----|-------------|-------|-------|----------|
| (C | ) Comment o | n the | two   | ancwere  |
|    | , Comment o | m unc | t W O | answers. |

6) The circle on the right has a minor arc length BC of 10cm. The angle  $\theta$  is 143.24°.


- (a) Write down an approximation for  $\theta$  in radians \_\_\_\_\_
- (b) Show how to calculate  $\theta$  in radians (to 1 decimal place)



(c) Calculate the radius of the circle

- 7) Each of the circles below has a radius of 8cm.
- (a) Calculate the size of the angle (in radians) of a sector in a circle which has radius 8cm and area of sector of 67cm<sup>2</sup> to nearest cm.

(b) Identify which one of the circles below has a blue sector of area 67cm² (to nearest cm) and explain your choice.

